Increased seed production has been a common goal during the domestication of cereal crops, and early cultivators of barley (Hordeum vulgare ssp. vulgare) selected a phenotype with a six-rowed spike that stably produced three times the usual grain number. This improved yield established barley as a founder crop for the Near Eastern Neolithic civilization. The barley spike has one central and two lateral spikelets at each rachis node. The wild-type progenitor (H. vulgare ssp. spontaneum) has a two-rowed phenotype, with additional, strictly rudimentary, lateral rows; this natural adaptation is advantageous for seed dispersal after shattering. Until recently, the origin of the six-rowed phenotype remained unknown. In the present study, we isolated vrs1 (six-rowed spike 1), the gene responsible for the six-rowed spike in barley, by means of positional cloning. The wild-type Vrs1 allele (for two-rowed barley) encodes a transcription factor that includes a homeodomain with a closely linked leucine zipper motif. Expression of Vrs1 was strictly localized in the lateral-spikelet primordia of immature spikes, suggesting that the VRS1 protein suppresses development of the lateral rows. Loss of function of Vrs1 resulted in complete conversion of the rudimentary lateral spikelets in two-rowed barley into fully developed fertile spikelets in the six-rowed phenotype. Phylogenetic analysis demonstrated that the six-rowed phenotype originated repeatedly, at different times and in different regions, through independent mutations of Vrs1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783110 | PMC |
http://dx.doi.org/10.1073/pnas.0608580104 | DOI Listing |
Ann Bot
May 2024
Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany.
Background And Aims: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets.
View Article and Find Full Text PDFJ Exp Bot
May 2024
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany.
The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs.
View Article and Find Full Text PDFPlant Commun
May 2024
State Key Laboratory of Crop Gene Resources and Breeding/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA)/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Tibetan weedy barleys reside at the edges of qingke (hulless barley) fields in Tibet (Xizang). The spikes of these weedy barleys contain or lack a brittle rachis, with either two- or six-rowed spikes and either hulled or hulless grains at maturity. Although the brittle rachis trait of Tibetan weedy barleys is similar to that of wild barley (Hordeum vulgare ssp.
View Article and Find Full Text PDFMol Breed
January 2024
Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100 Shaanxi China.
Cell Rep
November 2023
Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China. Electronic address:
Grain number and size determine grain yield in crops and are closely associated with spikelet fertility and grain filling in barley (Hordeum vulgare). Abortion of spikelet primordia within individual barley spikes causes a 30%-50% loss in the potential number of grains during development from the awn primordium stage to the tipping stage, after that grain filling is the primary factor regulating grain size. To identify transcriptional signatures associated with spike development, we use a six-rowed barley cultivar (Morex) to develop a spatiotemporal transcriptome atlas containing 255 samples covering 17 stages and 5 positions along the spike.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!