As consequence of glomerular filtration the viscosity of blood flowing through the efferent arteriole increases. Recently, we found that shear stress modulates proximal bicarbonate reabsorption and nitric oxide (NO.) was the chemical mediator of this effect. In the present work, we found that agonists of NO. production affected basolateral membrane potential (V (blm)) of the proximal convoluted tubule (PCT) epithelium. Using paired micropuncture experiments, we perfused peritubular capillaries with solutions with different viscosity while registering the V (blm). Our results showed that a 50% increment in the viscosity, or the addition of bradykinin (10(-5) M) to the peritubular perfusion solution, induced a significant and similar hyperpolarization of the V (blm) at the PCT epithelium of 6 +/- 0.7 mV (p < 0.05). Both hyperpolarizations were reverted by L-NAME (10(-4) M). Addition of 2,2'-(hydroxynitrosohydrazino) bis-ethanamine (NOC-18) 3 x 10(-4) M to the peritubular perfusion solution induced a hyperpolarization of the same magnitude of that high viscosity or bradykinin. These results strongly suggest the involvement of NO. in the effect of high viscosity solutions. This effect seems to be mediated by activation of K+(ATP) channels as glybenclamide (5 x 10(-5) M) added to peritubular solutions induced a larger depolarization of the V (blm) with high viscosity solutions. Acetazolamide (5 x 10(-5) M) added to high viscosity solutions induced a larger hyperpolarization (8 +/- 1 mV; p < 0.05), suggesting that depolarizing current due to HCO(-)3 exit across the basolateral membrane damps the hyperpolarizing effect of high viscosity. Considering that Na(+) and consequently water reabsorption is highly dependent on electrical gradient, the present data suggest that the endothelium of kidney vascular bed interacts in paracrine fashion with the epithelia, affecting V (blm) and thus modulating PCT reabsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-006-0198-7 | DOI Listing |
Sci Rep
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Instituto de Pesquisa Pelé Pequeno Príncipe, 80240-020 Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, 80230-020 Curitiba, PR, Brazil. Electronic address:
The mushroom Pleurotus ostreatus is widely produced in Brazil and its stipes are discarded before commercialization. In the present study, this agricultural fungal waste (mushroom stipes), was analyzed by preparing an aqueous extract and obtaining the polysaccharides by ethanol precipitation (POS-extract). The fraction presented 37 % of carbohydrates and small amounts of proteins and phenolic compounds.
View Article and Find Full Text PDFChem Sci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.
View Article and Find Full Text PDFIn this paper, we report an investigation into the dynamics of laser-induced particle sputtering on the rear surface of fused silica at high-fluence laser systems. Using time-resolved pump-probe and continuous imaging techniques, we capture the entire sputtering process over a broader timescale. The morphology, kinematics, and their correlation with damage growth are analyzed through microscopic imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!