Background: Several rheological disorders of the erythrocytes, such as increased aggregation and decreased deformability, have been observed in diabetes mellitus and have been implicated in the development of diabetic microangiopathy. Structural alterations of the erythrocyte membrane proteins caused by the diabetic process may be at the origin of those observations. In the present study, we searched for erythrocyte membrane protein alterations in diabetic retinopathy.

Methods: We examined peripheral blood samples from 40 type-2 diabetic patients with diabetic retinopathy of variable severity (19 males and 21 females, mean age 66.8 years, Group A) and we compared them with samples from 19 type-2 diabetic patients without diabetic retinopathy (13 males and six females, mean age 66.5 years, Group B) and 16 healthy volunteers (eight males and eight females, mean age 65.6 years, Group C). Erythrocyte membrane ghosts from all samples were subjected to SDS-PAGE, and the electrophoretic pattern of transmembrane and cytoskeletal proteins was analysed for each sample. The protein quantification of each electrophoretic band was accomplished through scanning densitometry.

Results: No significant deviations from normal electrophoresis were observed in Groups B and C, apart from an increase in band 8 in two samples from Group B (11%). In contrast, in 14 samples from Group A (35%) we detected increases in protein band 8 and/or membrane-bound haemoglobin along with a decrease in spectrin. Moreover, increased mobility of band 3, an aberrant high molecular weight (MW) (> 255 kDa) band and a low MW (42 kDa) band were evident in ten samples from Group A (25%). Glycophorins were altered in 46% of Group-A patients versus 38% of Group-B patients. Females and patients with long duration of diabetes presented more electrophoretic abnormalities.

Conclusions: Structural alterations of the erythrocyte membrane proteins are shown for the first time in association with diabetic retinopathy. Their detection may serve as a blood marker for the development of diabetic microangiopathy. Further studies are needed to assess whether pharmaceutical intervention to the rheology of erythrocytes can prevent or alleviate microvascular diabetic complications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00417-006-0500-6DOI Listing

Publication Analysis

Top Keywords

erythrocyte membrane
20
diabetic retinopathy
16
structural alterations
12
alterations erythrocyte
12
membrane proteins
12
males females
12
females age
12
years group
12
samples group
12
diabetic
11

Similar Publications

Associations of erythrocyte membrane fatty acids with blood pressure in children.

Clin Nutr

January 2025

Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address:

Background & Aims: Different fatty acids may vary in their effect on blood pressure. We tested whether fatty acid classes measured in erythrocytes are associated with blood pressure.

Methods: This cross-sectional study included 421 children from Guangzhou, China.

View Article and Find Full Text PDF

Unveiling the Potency of Gardenia Extract Against : Insights from In Vitro and In Vivo Studies.

Biomedicines

January 2025

Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Background And Aim: () could treat various inflammatory diseases. This study aimed to investigate the effects of fruit extract on gastric inflammation and protective mechanisms in ()-induced gastritis. Experimental procedure fruit extract was prepared and analyzed for geniposide content.

View Article and Find Full Text PDF

Oxidative Stress and Cytoskeletal Reorganization in Hypertensive Erythrocytes.

Antioxidants (Basel)

December 2024

Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico.

Oxidative stress is widely recognized as a key mechanism in the development of hypertension. Under pathological conditions, such as in hypertension, oxidative stress leads to irreversible posttranslational modifications of proteins, which result in loss of protein function and cellular damage. We have previously documented physiological and morphological changes across various blood and bone marrow cell lineages, all of which exhibit elevated oxidative stress.

View Article and Find Full Text PDF

Immediately after invading their chosen host cell, the mature human erythrocyte, malaria parasites begin to export an array of proteins to this compartment, where they initiate processes that are prerequisite for parasite survival and propagation, including nutrient import and immune evasion. One consequence of these activities is the emergence of novel adhesive phenotypes that can lead directly to pathology in the human host. To identify parasite proteins involved in this process, we used modern genetic tools to target genes encoding 15 exported parasite proteins, selected by an in silico workflow.

View Article and Find Full Text PDF

Screening for transcriptomic associations with Swine Inflammation and Necrosis Syndrome.

BMC Vet Res

January 2025

Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.

Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!