Fibromodulin, a member of the small leucine-rich proteoglycan family, has been recently suggested as a biologically significant mediator of fetal scarless repair. To assess the role of fibromodulin in the tissue remodeling, we constructed an adenoviral vector expressing human fibromodulin cDNA. We evaluated the effect of adenovirus-mediated overexpression of fibromodulin in vitro on transforming growth factors and metalloproteinases in fibroblasts and in vivo on full-thickness incisional wounds in a rabbit model. In vitro, we found that Ad-Fibromodulin induced a decrease of expression of TGF-beta(1) and TGF-beta(2) precursor proteins, but an increase in expression of TGF-beta(3) precursor protein and TGF-beta type II receptor. In addition, fibromodulin overexpression resulted in decreased MMP-1 and MMP-3 protein secretion but increased MMP-2, TIMP-1, and TIMP-2 secretion, whereas MMP-9 and MMP-13 were not influenced by fibromodulin overexpression. In vivo evaluation by histopathology and tensile strength demonstrated that Ad-Fibromodulin administration could ameliorate wound healing in incisional wounds. In conclusion, although the mechanism of scar formation in adult wounds remains incompletely understood, we found that fibromodulin overexpression improves wound healing in vivo, suggesting that fibromodulin may be a key mediator in reduced scarring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-006-0148-zDOI Listing

Publication Analysis

Top Keywords

incisional wounds
12
fibromodulin overexpression
12
fibromodulin
9
overexpression fibromodulin
8
scar formation
8
full-thickness incisional
8
wound healing
8
overexpression
5
adenoviral mediated
4
mediated overexpression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!