Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply.

Can J Physiol Pharmacol

Department of Pharmacology, Faculty of Pharmacy, Ankara University, Turkey.

Published: November 2006

The concentration of fatty acids in the blood or perfusate is a major determinant of the extent of myocardial fatty acid oxidation. Increasing fatty acid supply in adult rat increases myocardial fatty acid oxidation. Plasma levels of fatty acids increase post-surgery in infants undergoing cardiac bypass operation to correct congenital heart defects. How a newborn heart responds to increased fatty acid supply remains to be determined. In this study, we examined whether the tissue levels of malonyl CoA decrease to relieve the inhibition on carnitine palmitoyltransferase (CPT) I when the myocardium is exposed to higher concentrations of long-chain fatty acids in newborn rabbit heart. We then tested the contribution of the enzymes that regulate tissue levels of malonyl CoA, acetyl CoA carboxylase (ACC), and malonyl CoA decarboxylase (MCD). Our results showed that increasing fatty acid supply from 0.4 mmol/L (physiological) to 1.2 mmol/L (pathological) resulted in an increase in cardiac fatty acid oxidation rates and this was accompanied by a decrease in tissue malonyl CoA levels. The decrease in malonyl CoA was not related to any alterations in total and phosphorylated acetyl CoA carboxylase protein or the activities of acetyl CoA carboxylase and malonyl CoA decarboxylase. Our results suggest that the regulatory role of malonyl CoA remained when the hearts were exposed to high levels of fatty acids.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y06-062DOI Listing

Publication Analysis

Top Keywords

malonyl coa
32
fatty acid
32
acid oxidation
16
acid supply
16
fatty acids
16
fatty
12
acetyl coa
12
coa carboxylase
12
coa
10
malonyl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!