Anticancer activity of an adenoviral vector expressing short hairpin RNA against BK virus T-ag.

Cancer Gene Ther

Dipartimento di Medicina Sperimentale e diagnostica e Centro Interdipartimentale per la Ricerca sul Cancro, Università di Ferrara, Ferrara, Italy.

Published: March 2007

The human polyomavirus BK (BKV) is oncogenic in rodents and induces malignant transformation of rodent cells in vitro. Although its role in human tumorigenesis is still debated, BKV represents an excellent model to evaluate molecularly targeted antineoplastic approaches. Here, we have tested whether stable suppression of the T antigen (T-ag) oncogene expression could inhibit the in vitro and in vivo malignant phenotype of BKV-transformed mouse cells. An adenovirus vector system that expresses small hairpin RNAs (shRNAs), which are converted into active small interfering RNAs (siRNA) molecules against the BKV T-ag, was developed. This vector was able to inhibit the expression of BKV T-ag through a highly efficient in vitro and in vivo delivery of the siRNA molecule. In addition, it allowed a stable expression of siRNA for a period of time sufficient to elicit a biological effect. Inhibition of T-ag expression results in reduction of the in vitro growth rate of BKV-transformed cells, which is, at least in part, caused by restoration of p53 activity and induction of apoptosis. In vivo studies proved that adenovirus vectors expressing anti-T-ag siRNA were able to suppress tumorigenicity of BKV-transformed cells. Moreover, adenovirus vector direct treatment of growing tumors resulted in a significant reduction of tumor growth. This study indicates that siRNAs delivery via a viral vector have a potential usefulness as in vivo anticancer tool against viral and cellular oncogenes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.cgt.7701014DOI Listing

Publication Analysis

Top Keywords

vitro vivo
8
cells adenovirus
8
adenovirus vector
8
bkv t-ag
8
bkv-transformed cells
8
vector
5
t-ag
5
anticancer activity
4
activity adenoviral
4
adenoviral vector
4

Similar Publications

Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing.

View Article and Find Full Text PDF

Extracellular matrix stiffness regulates colorectal cancer progression via HSF4.

J Exp Clin Cancer Res

January 2025

Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.

Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.

Methods: This study included 107 CRC patients.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Background: The increased apoptosis of bile duct epithelial cells (BECs) due to some damage factors is considered the initiating factor in the occurrence and progression of biliary atresia (BA). Vitamin D receptor (VDR) is thought to play a crucial role in maintaining the intrinsic immune balance and integrity of bile duct epithelial cells (BECs). To investigate the role of VDRs in the pathogenesis and progression of BA using in vitro and in vivo models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!