A mouse model combining liver-specific deletion with global suppression of the NADPH-cytochrome P450 reductase gene (Cpr) has been developed and characterized. These mice (designated "Cpr-low and liver-Cpr-null" or CL-LCN) retain the respective phenotypes of the previously reported Cpr-low (CL) and liver-Cpr-null (LCN) mouse strains, but hepatic deletion of the Cpr gene occurs at an earlier age in the CL-LCN mouse than in the LCN mouse. Residual hepatic microsomal CPR activities are very low in both CL-LCN and LCN mice (at 1.5 and 2.5% of wild-type levels, respectively). The utility of CL-LCN mice for in vivo drug metabolism studies was explored using the cytochrome P450 (P450) prodrug cyclophosphamide (CPA). After i.p. injection of CPA at 100 mg/kg, the t1/2 and the area under the concentration-time curve for plasma CPA were significantly increased in mice deficient in liver CPR compared with wild-type controls, indicating a lower rate of metabolism, with the effects greater in CL-LCN mice than in LCN mice. Correspondingly, substantial decreases in Cmax, and increases in Tmax, and t1/2, of 4-hydroxycyclophosphamide (4-OH-CPA) formation were observed in both LCN and CL-LCN mice relative to wild-type controls. In contrast, CPA and 4-OH-CPA pharmacokinetic parameters were essentially unchanged in CL mice, relative to wild-type controls. The slower elimination of CPA in CL-LCN mice compared with LCN mice suggests a role for extrahepatic P450 in the in vivo metabolism of CPA and demonstrates the utility of the CL-LCN model in determining the role of extrahepatic P450 enzymes in drug metabolism and chemical toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.106.118240DOI Listing

Publication Analysis

Top Keywords

cl-lcn mice
16
lcn mice
12
wild-type controls
12
mice
10
mouse model
8
liver-specific deletion
8
deletion global
8
global suppression
8
suppression nadph-cytochrome
8
nadph-cytochrome p450
8

Similar Publications

Role of small intestinal cytochromes p450 in the bioavailability of oral nifedipine.

Drug Metab Dispos

September 2007

Wadsworth Center, New York State Department of Health, Empire State Plaza, Box 509, Albany, NY 12201-0509, USA.

To determine the effect of intestinal cytochrome P450 (P450) enzymes on the bioavailability of oral drugs, we have examined the metabolism of nifedipine, an antihypertensive drug and a model substrate of CYP3A4, in mouse models having deficient expression of the NADPH-cytochrome P450 reductase. Initial studies were performed on Cpr-low (CL) mice, which have substantial decreases in Cpr expression in all tissues examined, including the small intestine. In CL mice, area under the concentration-time curve (AUC) values for blood nifedipine after intraperitoneal and oral dosing were 1.

View Article and Find Full Text PDF

A mouse model combining liver-specific deletion with global suppression of the NADPH-cytochrome P450 reductase gene (Cpr) has been developed and characterized. These mice (designated "Cpr-low and liver-Cpr-null" or CL-LCN) retain the respective phenotypes of the previously reported Cpr-low (CL) and liver-Cpr-null (LCN) mouse strains, but hepatic deletion of the Cpr gene occurs at an earlier age in the CL-LCN mouse than in the LCN mouse. Residual hepatic microsomal CPR activities are very low in both CL-LCN and LCN mice (at 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!