A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Altered specificity of a AAA+ protease. | LitMetric

Altered specificity of a AAA+ protease.

Mol Cell

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Published: January 2007

ClpXP, an ATP-dependent protease, degrades hundreds of different intracellular proteins. ClpX chooses substrates by binding peptide tags, typically displayed at the N or C terminus of the protein to be degraded. Here, we identify a ClpX mutant that displays a 300-fold change in substrate specificity, resulting in decreased degradation of ssrA-tagged substrates but improved degradation of proteins with other classes of degradation signals. The altered-specificity mutation occurs within "RKH" loops, which surround the entrance to the central pore of the ClpX hexamer and are highly conserved in the ClpX subfamily of AAA+ ATPases. These results support a major role for the RKH loops in substrate recognition and suggest that ClpX specificity represents an evolutionary compromise that has optimized degradation of multiple types of substrates rather than any single class.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847774PMC
http://dx.doi.org/10.1016/j.molcel.2006.11.018DOI Listing

Publication Analysis

Top Keywords

clpx
5
altered specificity
4
specificity aaa+
4
aaa+ protease
4
protease clpxp
4
clpxp atp-dependent
4
atp-dependent protease
4
protease degrades
4
degrades hundreds
4
hundreds intracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!