While studies of the adaptor SH3BP2 have implicated a role in receptor-mediated signaling in mast cells and lymphocytes, they have failed to identify its function or explain why SH3BP2 missense mutations cause bone loss and inflammation in patients with cherubism. We demonstrate that Sh3bp2 "cherubism" mice exhibit trabecular bone loss, TNF-alpha-dependent systemic inflammation, and cortical bone erosion. The mutant phenotype is lymphocyte independent and can be transferred to mice carrying wild-type Sh3bp2 alleles through mutant fetal liver cells. Mutant myeloid cells show increased responses to M-CSF and RANKL stimulation, and, through mechanisms of increased ERK 1/2 and SYK phosphorylation/activation, they form macrophages that express high levels of TNF-alpha and osteoclasts that are unusually large. M-CSF and RANKL stimulation of myeloid cells that overexpress wild-type SH3BP2 results in similar large osteoclasts. This indicates that the mutant phenotype reflects gain of SH3BP2 function and suggests that SH3BP2 is a critical regulator of myeloid cell responses to M-CSF and RANKL stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2006.10.047DOI Listing

Publication Analysis

Top Keywords

m-csf rankl
16
responses m-csf
12
bone loss
12
rankl stimulation
12
myeloid cell
8
cell responses
8
loss inflammation
8
sh3bp2
8
sh3bp2 "cherubism"
8
"cherubism" mice
8

Similar Publications

To clarify the roles and mechanisms of adipokine chemerin in exercise-induced bone improvements in type 2 diabetes mellitus (DM) mice and mice fed on high fat diet (HFD). DM mice were established by HFD+streptozotocin injection, exogenous chemerin was supplemented prior to running, and found that exogenous chemerin reversed 6-week exercise-induced improvements in cancellous bone parameters in DM mice. While adipose-specific chemerin knockout improved microstructure and mass of cancellous bone in HFD mice and further increased exercise-induced bone improvements, accompanied with promoted osteogenesis and inhibited osteoclasis represented as the changes of RANKL, M-CSF, Runx2, Osterix, OPG, ALP and CTSK.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

RANKL and its receptor RANK play a vital role in osteoclastogenesis. RANK primarily recruits TRAFs to promote osteoclastogenesis but also contains an TRAF-independent motif (IVVY), which mediates osteoclast lineage commitment in vitro. Here, we have developed knockin mice in which inactivating mutations are introduced in the IVVY motif (IVVY to IVAF).

View Article and Find Full Text PDF

The role of FOXM1 in acetylcysteine improving diabetic periodontitis.

J Mol Histol

December 2024

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 3rd Section, South Renmin Road, Chengdu, Sichuan, 610041, China.

Diabetic periodontitis (DP) stems from hyperglycemia-driven oxidative stress amplification and chronic inflammation, leading to periodontal tissue breakdown. Misregulated forkhead box protein M1 (FOXM1) play key roles in this process, exacerbating both inflammation and oxidative stress. In light of N-Acetylcysteine (NAC)'s potent anti-oxidative capacity and anti-inflammatory potential, understanding how it modulates these central pathways to alleviate DP holds high scientific and clinical importance.

View Article and Find Full Text PDF

Titanium Surface Synergy: Strontium Incorporation and Controlled Disorder Nanotopography Optimize Osteoinduction.

ACS Appl Mater Interfaces

November 2024

Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, The Advanced Research Centre, 11 Chapel Lane, Glasgow G11 6EW, Scotland, U.K.

Osteoporotic fractures and arthritis represent a major socioeconomic health burden. Fragility fracture fixation and joint replacement are often undertaken using titanium (Ti) or Ti alloy implants. Ideally these should induce bone formation and reduce osteoclast formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!