Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present study, we investigated whether anandamide produces its behavioral effects through a cannabinoid CB(1) receptor mechanism of action. The behavioral effects of anandamide were evaluated in mice that lacked both fatty acid amide hydrolase (FAAH) and cannabinoid CB(1) receptors (DKO) as compared to FAAH (-/-), cannabinoid CB(1) (-/-), and wild type mice. Anandamide produced analgesia, catalepsy, and hypothermia in FAAH (-/-) mice, but failed to elicit any of these effects in the other three genotypes. In contrast, anandamide decreased locomotor behavior regardless of genotype, suggesting the involvement of multiple mechanisms of action, including its products of degradation. These findings indicate that the cannabinoid CB(1) receptor is the predominant target mediating anandamide's behavioral effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2006.11.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!