TRPM2 is a cation channel enabling influx of Na+ and Ca2+, leading to depolarization and increases in the cytosolic Ca2+ concentration ([Ca2+]i). It is widely expressed, e.g. in many neurons, blood cells and the endocrine pancreas. Channel gating is induced by ADP-ribose (ADPR) that binds to a Nudix box motif in the cytosolic C-terminus of the channel. Endogenous ADPR concentrations in leucocytes are sufficiently high to activate TRPM2 in the presence of an increased [Ca2+]i but probably not at resting [Ca2+]i. Another channel activator is oxidative stress, especially hydrogen peroxide (H2O2) that may act through ADPR after ADPR polymers have been formed by poly(ADP-ribose) polymerases (PARPs) and hydolysed by glycohydrolases. H2O2-stimulated TRPM2 channels essentially contribute to insulin secretion in pancreatic beta-cells and alloxan-induced diabetes mellitus. Inhibition of TRPM2 channels may be achieved by channel blockers such as flufenamic acid or the anti-fungal agents clotrimazole or econazole. Selective blockers of TRPM2 are not yet available; those would be valuable for a characterization of biological roles of TRPM2 in various tissues and as potential drugs directed against oxidative cell damage, reperfusion injury or leucocyte activation. Activation of TRPM2 may be prevented by anti-oxidants, PARP inhibitors and glycohydrolase inhibitors. In future, binding of ADPR to the Nudix box may be targeted. In light of the wide-spread expression and growing list of cellular functions of TRPM2, useful therapeutic applications are expected for future drugs that block TRPM2 channels or inhibit their activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-540-34891-7_14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!