Much of our understanding of physiology and metabolism is derived from investigating mouse mutants and transgenic mice, and open-access platforms for standardized mouse phenotyping such as the German Mouse Clinic (GMC) are currently viewed as one powerful tool for identifying novel gene-function relationships. Phenotyping or phenotypic screening involves the comparison of wild-type control mice with their mutant or transgenic littermates. In our study, we explored the extent to which standardized phenotyping will succeed in detecting biologically relevant phenotypic differences in mice generated and provided by different collaborators. We analyzed quantitative metabolic data (body mass, energy intake, and energy metabolized) collected at the GMC under the current workflow, and used them for statistical power considerations. Our results demonstrate that there is substantial variability in these parameters among lines of wild-type C57BL/6 (B6) mice from different sources. Given this variable background noise in mice that serve as controls, subtle phenotypes in mutant or transgenic littermates may be overlooked. Furthermore, a phenotype observed in one cohort of a mutant line may not be reproducible (to the same extent) in mice coming from a different environment or supplier. In the light of these constraints, we encourage researchers to incorporate information on intrastrain variability into future study planning, or to perform advanced hierarchical analyses. Both will ultimately improve the detectability of novel phenotypes by phenotypic screening.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00114-006-0203-1DOI Listing

Publication Analysis

Top Keywords

phenotypic screening
8
mutant transgenic
8
transgenic littermates
8
mice
6
power matters
4
matters closing
4
phenotyping
4
closing phenotyping
4
phenotyping gap
4
gap understanding
4

Similar Publications

Genomic profiling at a single center cracks the code in inborn errors of immunity.

Intern Emerg Med

January 2025

Unit of Internal Medicine and Clinical Oncology "G. Baccelli", Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro Medical School, Bari, Italy.

Inborn errors of immunity (IEI) entail a diverse group of disorders resulting from hereditary or de novo mutations in single genes, leading to immune dysregulation. This study explores the clinical utility of next-generation sequencing (NGS) techniques in diagnosing monogenic immune defects. Eight patients attending the immunodeficiency clinic and with unclassified antibody deficiency were included in the analysis.

View Article and Find Full Text PDF

Background: Pancreatic cancer (PAC) has a complex tumor immune microenvironment, and currently, there is a lack of accurate personalized treatment. Establishing a novel consensus machine learning driven signature (CMLS) that offers a unique predictive model and possible treatment targets for this condition was the goal of this study.

Methods: This study integrated multiple omics data of PAC patients, applied ten clustering techniques and ten machine learning approaches to construct molecular subtypes for PAC, and created a new CMLS.

View Article and Find Full Text PDF

Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.

View Article and Find Full Text PDF

A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis.

Biomater Sci

January 2025

Zhejiang Key Laboratory of Smart BioMaterials, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Accurate imaging of tumor hypoxia is critical for early cancer diagnosis and clinical outcomes, highlighting the great need for its detection specificity and sensitivity. In this report, we propose a probe (HTRNP) that simultaneously has hypoxia-targeting and hypoxia-responsive capabilities to enhance the tumor hypoxia imaging efficiency. HTRNP was successfully prepared through the encapsulation of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP), which exhibits hypoxia-dependent phosphorescence, within the amphiphilic block copolymer OPDMA-PF, which has hypoxia-targeting tertiary amine -oxide moieties and hydrophobic perfluorobenzene ring structures, which highly improved the loading content and water solubility of PtPFPP.

View Article and Find Full Text PDF

Pathogenicity assessment of genetic variants identified in patients with severe hypertriglyceridemia: novel cases of Familial Chylomicronemia Syndrome from the Dyslipidemia Registry of the Spanish Atherosclerosis Society.

Genet Med

January 2025

Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit. Internal Medicine Service. University Hospital Virgen de la Victoria, Málaga, Spain.

Purpose: Genetic testing is required to confirm a diagnosis of familial chylomicronemia syndrome (FCS). We assessed the pathogenicity of variants identified in the FCS canonical genes to diagnose FCS cases.

Methods: 245 patients with severe hypertriglyceridemia underwent next-generation sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!