A computational characterization of the hydrogen-bonding and stacking interactions of hypoxanthine.

Phys Chem Chem Phys

Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick, Canada E4L 1G8.

Published: January 2007

The hydrogen-bonding and stacking interactions of hypoxanthine, a potential universal nucleobase, were calculated using a variety of methodologies (CCSD(T), MP2, B3LYP, PWB6K, AMBER). All methods predict that the hydrogen-bonding interaction in the hypoxanthine-cytosine pair is approximately 25 kJ mol(-1) stronger than that in the other dimers. Although the calculations support suggestions from experiments that hypoxanthine preferentially binds with cytosine, the trend in the calculated hydrogen-bond strengths for the remaining natural nucleobases do not show a strong correlation with the experimentally predicted binding preferences. However, our calculations suggest that the stacking interactions of hypoxanthine are similar in magnitude to the hydrogen-bonding interactions at all levels of theory (with the exception of B3LYP, which incorrectly predicts stacked dimers to be unstable). Therefore, stacking interactions should also be considered when analyzing the stability of DNA helices containing hypoxanthine and the use of larger models that account for both hydrogen-bonding and stacking within DNA duplexes will likely result in better agreement with experimental observations. For the majority of the dimers, PWB6K and AMBER provide reasonable binding strengths at reduced computational costs, and therefore will be useful techniques for considering larger models.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b606388hDOI Listing

Publication Analysis

Top Keywords

stacking interactions
16
hydrogen-bonding stacking
12
interactions hypoxanthine
12
pwb6k amber
8
larger models
8
hydrogen-bonding
5
stacking
5
interactions
5
hypoxanthine
5
computational characterization
4

Similar Publications

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.

View Article and Find Full Text PDF

Electronics based on natural or degradable materials are a key requirement for next-generation devices, where sustainability, biodegradability, and resource efficiency are essential. In this context, optimizing the molecular chemical structure of organic semiconductor compounds (OSCs) used as active layers is crucial for enhancing the efficiency of these devices, making them competitive with conventional electronics. In this work, honey-gated organic field-effect transistors (HGOFETs) were fabricated using four different perylene derivative films as OSCs, and the impact of the chemical structure of these perylene derivatives on the performance of HGOFETs was investigated.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

The coamorphous formulations have attracted increasing interest due to enhanced solubility and bioavailability, together with synergistic pharmacological effects. In this study, a ternary coamorphous system of polyphenols was successfully prepared, wherein baicalein (Bai) and resveratrol (Res) were constructed into a single-phase coamorphous system mediated by piperine (Pip). FTIR and ss C NMR spectra together with quantum chemical calculation and molecular dynamics simulation suggested Pip as a molecular bridge connected Bai and Res molecules through π-π stacking and hydrogen bonding interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!