Presynaptic GABA(B) receptors (GABA(B)R) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABA(B)R agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABA(B)R may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABA(B)R antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2504722 | PMC |
http://dx.doi.org/10.1159/000098515 | DOI Listing |
PLoS One
January 2025
Radiant Research Services Pvt. Ltd., Bangalore, India.
1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.
View Article and Find Full Text PDFDiabetes Metab
January 2025
Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium. Electronic address:
Background: Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Pharmacology, University of Oxford, Oxford, UK.
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
FEBS J
January 2025
Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!