Glucocorticoids (GCs) immunosuppression acts via regulation of several transcription factors (TF), including activating protein (AP)-1, NF-kappaB, and NFAT. GCs inhibit Th1 cytokines and promote a shift toward Th2 differentiation. Th1 phenotype depends on TF T-bet. In this study, we examined GC regulation of T-bet. We found that GCs inhibit T-bet transcriptional activity. We show that glucocorticoid receptor (GR) physically interacts with T-bet both in transfected cell lines and in primary splenocyte cultures with endogenous GR and T-bet. This interaction also blocks GR-dependent transcription. We show both in vitro and in vivo at endogenous binding sites that the mechanism underlying T-bet inhibition further involves reduction of T-bet binding to DNA. Using specific mutations of GR, we demonstrate that the first zinc finger region of GR is required for T-bet inhibition. GCs additionally inhibit T-bet both at mRNA and protein expression levels, revealing another layer of GR action on T-bet. Finally, we examined the functional consequences of GR/T-bet interaction on IFN-gamma, showing that GCs inhibit transcriptional activity of T-bet on its promoter. In view of the crucial role of T-bet in T cell differentiation and inflammation, we propose that GR inhibitory interaction with T-bet may be an important mechanism underlying the immunosuppressive properties of GCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.06-7452com | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!