Virus detection methodology provides detection of dengue virus in the early phase of the disease. PCR, targeting cDNA derived from viral RNA, has been used as a laboratory-based molecular tool for the detection of Dengue virus. We report the development and use of three real-time one-step reverse transcriptase PCR (RT-PCR) assays to detect dengue cases and serotype the virus involved. The first RT-PCR assay uses SYBR green I as the reporting dye for the purpose of cost-effective screening for dengue virus. The detection limit of the SYBR green I assay was 10 PFU/ml (0.01 equivalent PFU per assay) for all four dengue virus serotypes. The second RT-PCR assay is a duplex fluorogenic probe-based real-time RT-PCR for serotyping clinical samples for dengue viruses. The detection threshold of the probe-based RT-PCR format was 0.1 PFU for serotypes Dengue-1 and Dengue-2, 1 PFU for serotype Dengue-3, and 0.01 PFU for serotype Dengue-4. The third is a fourplex assay that detects any of the four serotypes in a single closed tube with comparable sensitivity. Validation of the assays with local clinical samples collected from 2004 to 2006 revealed that there was an 88% positive correlation between virus isolation and RT-PCR with regard to dengue virus detection and a 100% correlation with seroconversion in subsequent samples. The serotyping results derived from duplex and fourplex assays agree fully with each other and with that derived from immunofluorescence assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1829098 | PMC |
http://dx.doi.org/10.1128/JCM.01258-06 | DOI Listing |
Trop Med Infect Dis
January 2025
Department of Research, PMO, Ministry Branch in Makkah Region, Ministry of Health (MOH), Makkah 21955, Saudi Arabia.
Dengue fever is caused by four common serotypes of the dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4). Patients infected with one serotype may develop lifelong serotype-specific protective immunity. However, they remain susceptible to reinfection with the other serotypes, often increasing the risk of severe forms of dengue.
View Article and Find Full Text PDFIJID Reg
March 2025
Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
Objectives: Arboviruses pose significant public health threats worldwide, with Southeast Asia being a hotspot for these infections. This study aimed to reassess the incidence of dengue, Zika, and chikungunya viruses in patients clinically diagnosed with dengue in East Java, Indonesia in 2023.
Methods: The study included 108 patients admitted to hospitals in Jember, with blood samples collected on admission.
J Arthropod Borne Dis
June 2024
Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, Pelita Harapan University, Tangerang, Indonesia.
Background: The spectrum of dengue infection ranges from asymptomatic or mild to severe disease. The pathogenic mechanisms are not fully understood. A viral infection can induce the neutrophil extracellular traps (NETs), and the excessive NETs lead to increased vascular permeability, coagulopathy, and platelet dysfunction, a hallmark of severe dengue.
View Article and Find Full Text PDFJ Neurol
January 2025
Research, Diagnosis and Reference Center, PAHO/WHO Collaborating Center for the Study of Dengue and Its Control, Institute "Pedro Kourí", Havana, Cuba.
Nanomedicine (Lond)
January 2025
Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.
Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!