Electron tomography of nascent herpes simplex virus virions.

J Virol

Department of Microbiology and Immunology, C5132 Veterinary Medical Center, New York State College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

Published: March 2007

Cells infected with herpes simplex virus type 1 (HSV-1) were conventionally embedded or freeze substituted after high-pressure freezing and stained with uranyl acetate. Electron tomograms of capsids attached to or undergoing envelopment at the inner nuclear membrane (INM), capsids within cytoplasmic vesicles near the nuclear membrane, and extracellular virions revealed the following phenomena. (i) Nucleocapsids undergoing envelopment at the INM, or B capsids abutting the INM, were connected to thickened patches of the INM by fibers 8 to 19 nm in length and < or =5 nm in width. The fibers contacted both fivefold symmetrical vertices (pentons) and sixfold symmetrical faces (hexons) of the nucleocapsid, although relative to the respective frequencies of these subunits in the capsid, fibers engaged pentons more frequently than hexons. (ii) Fibers of similar dimensions bridged the virion envelope and surface of the nucleocapsid in perinuclear virions. (iii) The tegument of perinuclear virions was considerably less dense than that of extracellular virions; connecting fibers were observed in the former case but not in the latter. (iv) The prominent external spikes emanating from the envelope of extracellular virions were absent from perinuclear virions. (v) The virion envelope of perinuclear virions appeared denser and thicker than that of extracellular virions. (vi) Vesicles near, but apparently distinct from, the nuclear membrane in single sections were derived from extensions of the perinuclear space as seen in the electron tomograms. These observations suggest very different mechanisms of tegumentation and envelopment in extracellular compared with perinuclear virions and are consistent with application of the final tegument to unenveloped nucleocapsids in a compartment(s) distinct from the perinuclear space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1865967PMC
http://dx.doi.org/10.1128/JVI.02571-06DOI Listing

Publication Analysis

Top Keywords

perinuclear virions
20
extracellular virions
16
nuclear membrane
12
virions
10
herpes simplex
8
simplex virus
8
electron tomograms
8
undergoing envelopment
8
inm capsids
8
virion envelope
8

Similar Publications

Article Synopsis
  • - The study investigates how SARS-CoV-2 buds and transports its virions from the ERGIC to the cell surface, revealing that the vesicles involved have a protein coat known as coatomer complex I (COPI).
  • - Researchers observed that during infection, the distribution of COPI and the ERGIC changed, suggesting they play a role in the virus's replication process.
  • - Depleting a key COPI component, COPB2, confined the SARS-CoV-2 virions within the ERGIC and significantly reduced viral release, indicating that targeting COPI could be a potential strategy for developing antiviral treatments.
View Article and Find Full Text PDF

Zika virus (ZIKV) infection causes significant human disease that, with no approved treatment or vaccine, constitutes a major public health concern. Its life cycle entirely relies on the cytoplasmic fate of the viral RNA genome (vRNA) through a fine-tuned equilibrium between vRNA translation, replication, and packaging into new virions, all within virus-induced replication organelles (vROs). In this study, with an RNA interference (RNAi) mini-screening and subsequent functional characterization, we have identified insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a new host dependency factor that regulates vRNA synthesis.

View Article and Find Full Text PDF

CLCC1 promotes membrane fusion during herpesvirus nuclear egress.

bioRxiv

September 2024

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America.

Article Synopsis
  • Researchers studied how ancient viruses, like herpes, move their protective capsids from the nucleus to the cytoplasm in infected cells.
  • They found that these viruses use a process involving a host protein called CLCC1, crucial for the fusion of capsids with the inner nuclear membrane.
  • The absence of CLCC1 hampers viral spread and leads to problems within the cell's structures, indicating that viruses have evolved to exploit ancient cellular mechanisms for their transmission.
View Article and Find Full Text PDF

Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production.

Microbiol Spectr

September 2024

National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.

Filoviruses produce viral particles with characteristic filamentous morphology. The major viral matrix protein, VP40, is trafficked to the plasma membrane and promotes viral particle formation and subsequent viral egress. In the present study, we assessed the role of the small GTPase Rab11-mediated endocytic pathway in Marburg virus (MARV) particle formation and budding.

View Article and Find Full Text PDF

Microtubule (MT)-dependent transport is a critical means of intracellular movement of cellular cargo by kinesin and dynein motors. MT-dependent transport is tightly regulated by cellular MT-associated proteins (MAPs) that directly bind to MTs and either promote or impede motor protein function. Viruses have been widely shown to usurp MT-dependent transport to facilitate their virion movement to sites of replication and/or for exit from the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!