Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2006.0213 | DOI Listing |
Sci Rep
January 2025
Department of Biology, Faculty of Sciences and Techniques (FST), Dan Dicko Dankoulodo University of Maradi, Maradi, Niger.
Climate change affects peri-urban agricultural systems. However, most studies on Climate-Smart Agriculture (CSA) often focused on climate-smart villages in the Sahel region. This study investigated peri-urban farming systems in West African Sahel cities.
View Article and Find Full Text PDFJ Anim Sci
January 2025
University of Reading, School of Agriculture, Policy and Development, Earley gate, RG6 6EU Reading, United Kingdom.
This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa 403206, India. Electronic address:
Analyzing manure nutrients such as total ammonium nitrogen (NH), dry matter (DM), calcium oxide (CaO), total nitrogen (-N), phosphorus pentoxide (PO), magnesium oxide (MgO), and potassium oxide (KO) helps in fulfilling crop nutritional needs while improving the profitability and a lower risk of pollutants. This study used two Near Infra Red (NIR) spectral datasets of fresh and dried manure. The freshly prepared NHCl, CaO, Ca(OH), PO, MgO, and KO samples were used for spectral signature peak identification and calibration.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Federal Rural University of Pernambuco, Department of Agronomy, Dom Manoel de Medeiros Street, w/n, Recife, PE, 52171-900, Brazil. Electronic address:
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.
View Article and Find Full Text PDFAnimal
January 2025
School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, United Kingdom.
Livestock directly contribute to greenhouse gas emissions, mainly through enteric fermentation and to a lesser extent manure management. Livestock feed composition plays a crucial role in diet quality and the resulting emissions from livestock. Diet composition varies seasonally particularly in tropical environments with long dry periods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!