This research deals with the transformation of an anthropomorphous landfill covering composed of a fill soil mixed with mechanically separated municipal waste compost. The study site was a municipal landfill near Perugia, Italy. Throughout the years, waste disposal in the landfill was performed by burial in horizontal layers, each one representing a yearly disposal. The external front of the landfill thus represented the yearly disposal over a 10-yr period starting in 1993. Temporal changes in the anthropomorphous soil over this period were studied by examining and describing soil profiles, and by collecting and analyzing soil samples from the 1993, 1994, 1997, and 2001 disposals. The samples were subjected to a series of physical, chemical, and biochemical analyses. The results obtained suggest that over a 10-yr period the top layer gained a pedological structure (subangular blocky and/or crumb) giving rise to an A horizon. Improved soil structure was confirmed by an increase in macroporosity, particularly for pores larger than 50 microm, measured by image analysis of soil thin sections. Total extractable carbon showed an increase in the content of humic substances, evidenced by parameters of humification. Enzymatic activities in the A and C1 horizons were also indicative of soil evolution and may serve as a valid indicator for monitoring the evolution of anthropogenic soils containing municipal waste compost.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2006.0086DOI Listing

Publication Analysis

Top Keywords

municipal waste
12
waste compost
12
landfill covering
8
perugia italy
8
yearly disposal
8
10-yr period
8
soil
7
transformation landfill
4
covering amended
4
municipal
4

Similar Publications

[Surveillance of the population density of adult in Guangdong Province from 2018 to 2023].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

August 2024

Institute of Disinfection and Vector Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, China.

Objective: To investigate the fluctuations in the population density of and changes in the population density of in different geographical areas and different breeding habitats in Guangdong Province from 2018 to 2023, so as to provide insights into prevention and control of mosquito-borne infectious diseases in the province.

Methods: surveillance sites were assigned in 1 609 townships (streets) from 121 districts (counties) of 21 cities in Guangdong Province during the period between March and November from 2018 to 2023. The surveillance of the population density of was performed once a month in each surveillance site, and once a month in specific settings in cities where dengue were highly prevalent in Guangdong Province from December to February of the next year during the period from 2018 through 2023.

View Article and Find Full Text PDF

Sustainable application of waste gangue mortar in coal mine tunnel support.

Sci Rep

January 2025

School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.

With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.

View Article and Find Full Text PDF

Integrated Quantitative Tracing for Karst Groundwater Contamination: A Case Study of Landfill in Zunyi, Guizhou Province, China.

Environ Pollut

January 2025

114 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, Zunyi, 563000, China; Karst Water Resources and Environment Academician Workstation of Guizhou Province, Zunyi 563000, China.

Sudden groundwater pollution in karst areas poses a serious threat to drinking water safety. Tracing contamination sources is crucial for managing and remediating groundwater pollution. Traditional tracing methods often lack accuracy, so this study combined multiple techniques to trace and quantify pollution sources near the municipal solid waste (MSW) landfill in Zunyi City, Guizhou Province, China.

View Article and Find Full Text PDF

L-Aspartic Acid with Dual Functions: An Eco-Friendly and Affordable Choice to Accelerate High Salinity Brine Utilization.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310058, China.

L-Aspartic acid (L-Asp) poses a dual function, which can affect the evaporation and crystallization process of the high-salinity brine by altering the physical or chemical properties of the salts. MSWI (municipal solid waste incineration) fly ash washing leachate, as a typical high-salinity brine, is utilized here to validate this hypothesis under the simulation guidance. Since L-Asp has stronger adsorption energy on the (110) crystal face of CaCO, L-Asp can facilitate the preferential growth of more valuable vaterite during the softening process (pretreatment before crystallization).

View Article and Find Full Text PDF

Continuous cropping decreases soil nutrients and destroys microbial community structure, so the development of eco-friendly and effective biofertilizers is necessary under present conditions. In this study, the preserving microalgal strain sp. (H) was firstly selected to be combined with agroforestry waste (shell powder, straw fermentation liquid) and the agroforestry microorganism sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!