Bile acids, which have been implicated in gastrointestinal-tract cell carcinogenesis, share properties with tumor promoters in that both affect signal transduction pathways responsible for cell proliferation and apoptosis. In the present study, we demonstrate that EGFR-ERK1/2 is activated following treatment of AGS human gastric carcinoma cells with bile acids. EGFR phosphoactivation is ligand-dependent, since treatment of cells with HB-EGF antisera or CM197 (a selective inhibitor of HB-EGF) markedly inhibits deoxycholate (DC)-promoted activation. Membrane-type bile acid receptor (M-BAR)/TGR5 is a recently identified G-protein-coupled receptor (GPCR). In AGS cells, siRNAs that target M-BAR suppress DC-induced phosphorylation of EGFR. Furthermore, introduction of siRNAs targeting ADAM17 transcripts resulted in suppression of DC-induced activation of EGFR and ERK1/2. These results suggest that in AGS cells, DC transactivates EGFR through M-BAR- and ADAM/HB-EGF-dependent mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.12.168 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.
View Article and Find Full Text PDFNeuron
June 2024
College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior.
View Article and Find Full Text PDFBiochem Soc Trans
April 2014
*Room K1-112, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
TGR5 (Takeda G-protein-coupled receptor 5) [also known as GPBAR1 (G-protein-coupled bile acid receptor 1), M-BAR (membrane-type receptor for bile acids) or GPR131 (G-protein-coupled receptor 131)] is a G-protein-coupled receptor that was discovered as a bile acid receptor. TGR5 has specific roles in several tissues, among which are the regulation of energy expenditure, GLP-1 (glucagon-like peptide 1) secretion and gall bladder filling. An accumulating body of evidence now demonstrates that TGR5 also acts in a number of processes important in inflammation.
View Article and Find Full Text PDFJ Surg Oncol
March 2013
Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan.
Background: The destruction of the basement membrane (BM) is the first step in cancer invasion and metastasis. Type IV collagen is a major component of the BM, and is composed of six genetically distinct α(IV) chains; α1(IV) to α6(IV). The loss of α5(IV) and α6(IV) chains from the epithelial BM at the early stage of cancer invasion has been reported in several types of cancers.
View Article and Find Full Text PDFHepatology
January 2012
Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA.
Bile acids have been shown to be important regulatory molecules for cells in the liver and gastrointestinal tract. They can activate various cell signaling pathways including extracellular regulated kinase (ERK)1/2 and protein kinase B (AKT) as well as the G-protein-coupled receptor (GPCR) membrane-type bile acid receptor (TGR5/M-BAR). Activation of the ERK1/2 and AKT signaling pathways by conjugated bile acids has been reported to be sensitive to pertussis toxin (PTX) and dominant-negative Gα(i) in primary rodent hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!