Central administration of angiotensin (Ang) II stimulates thirst and sodium intake via the AT-1 receptor. Mineralocorticoid pretreatment enhances Ang II-induced drinking of hypertonic salt solutions (i.e. the synergy theory) in Wistar and Sprague-Dawley rats. Electrophysiological experiments using iontophoretic application of Ang II, and the AT-1 receptor specific nonpeptide antagonist losartan, have shown excitation of neurones in the preoptic/medial septum region of urethane anaesthetised male Wistar rats. Deoxycorticosterone acetate (DOCA) pretreatment further enhanced this neuronal excitation to Ang II and reduced the responses to losartan. This generated the hypothesis that DOCA-enhanced Ang II-induced neuronal excitation was necessary for the enhanced salt intake of synergy theory. We tested this hypothesis in Fischer 344 rats that are known to have a low basal salt appetite and reduced sensitivity for i.c.v. Ang II. We compared the effect of DOCA pretreatment on i.c.v. Ang II-induced water and 2% NaCl intake in behaving adult male, Fischer rats, as well as preoptic/medial septum region neuronal responses to Ang II and losartan, using a seven-barrelled micro-iontophoretic electrode sealed to a recording electrode in urethane anaesthetised, male Fischer rats. Two groups were used: one pretreated with DOCA (0.5 mg/day for 3 days) and the other comprising controls, treated with isotonic saline. Ang II applied iontophoretically increased activity in 31% of the spontaneously active neurones. Following DOCA pretreatment, the responsiveness to Ang II (when applied after aldosterone) was increased. By contrast, in the behaving animals, water and 2% NaCl intake in response to i.c.v. Ang II were not enhanced by DOCA pretreatment. These results do not support the working hypothesis but could be interpreted as evidence for the existence of two separately modulated central Ang II systems: one responding to mineralocorticoids with increased neuronal activity and the other responsible for the Ang II-induced sodium appetite in conscious rats.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2826.2006.01512.xDOI Listing

Publication Analysis

Top Keywords

ang ii-induced
16
doca pretreatment
16
ang
13
neuronal excitation
12
male fischer
12
fischer rats
12
icv ang
12
mineralocorticoid pretreatment
8
pretreatment enhances
8
ii-induced neuronal
8

Similar Publications

Objectives: Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood.

Materials And Methods: In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) and hypertension are interconnected, worsening each other. Recent studies have shown that the reduction of peroxiredoxin 5 (Prdx5) accelerates kidney fibrosis, a hallmark of CKD. This study aims to observe whether the deficiency of Prdx5 also contributes to the worsening of CKD-related hypertension.

View Article and Find Full Text PDF

Arterial hypertension has a high prevalence in the population and is considered both a cardiovascular disease and an important risk factor for the development of other cardiovascular diseases. Tea consumption shows antihypertensive effects due to its composition in terms of bioactive substances such as flavan-3-ols and xanthines. The aim of this study was to assess the possible beneficial effects of two tea extracts, one of white tea (ADM White Tea; WTE) and another one composed of a mixture of black tea and green tea (ADM Tea Complex; CTE), on the cardiovascular alterations induced by angiotensin II (AngII) infusion in mice.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!