Our purpose was to determine how enamel matrix derivative (EMD) affects the expression of osteogenesis- and chondrogenesis-related transcription factors in undifferentiated mesenchymal cells. C3H10T1/2 cell line, a typical pluripotential mesenchymal cell line, was cultured with or without EMD for up to 7 d. Expression of mRNAs encoding osteogenesis- and chondrogenesis-related transcription factors (Runx2, Osterix, AJ18, Dlx5, Msx2, Sox5, Sox9 and Zfp60) was measured using real-time polymerase chain reaction. Runx2 and Sox9 protein expression and the presence of bone morphogenetic protein (BMP)-6-like molecules in EMD were determined by Western blotting. EMD substantially increased mRNA levels of osteogenesis- and chondrogenesis-related transcription factors. EMD also induced Runx2 and Sox9 protein expression. Western blotting analysis of EMD using anti-BMP-6 antibody revealed immunoreactive bands corresponding to about 14 kDa and 60 kDa. These results suggest that EMD stimulates osteogenesis- and chondrogenesis-related transcription factors, and these activities may be mediated, at least in part, by BMP-6 in EMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7270.2007.00250.x | DOI Listing |
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2024
Department of Sport Medicine, Wuhan Fourth Hospital, Wuhan Hubei, 430030, P. R. China.
Phytother Res
February 2024
Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
Osteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported.
View Article and Find Full Text PDFRegen Ther
March 2023
Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
Introduction: Periodontal ligament is regenerated in association with hard tissue regeneration. Tenomodulin (Tnmd) expression has been confirmed in periodontal ligament and it reportedly inhibits angiogenesis or is involved in collagen fibril maturation. The introduction of Tnmd by gene transfection in bone tissue regeneration therapy might inhibit topical hard tissue formation and induce the formation of dense fibrous tissue.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2022
Nagahama Institute of Biochemical Science, Oriental Yeast Co., Shiga, 526-0804, Japan. Electronic address:
WP9QY (W9) is a receptor activator of nuclear factor-κB ligand (RANKL)-binding peptide that inhibits osteoclastogenesis by blunting the RANKL-RANK interaction, and also increases osteoblastogenesis via RANKL reverse signaling. W9 has dual effects on osteoclasts and osteoblasts; however, it is unknown whether the peptide has an effect on chondrocytes. Here, we report that W9 induces proliferation and differentiation of chondrocytes in vitro and repairs full-thickness articular cartilage defects in vivo.
View Article and Find Full Text PDFBiofabrication
March 2022
School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
Stem cell therapy using mesenchymal stem/stromal cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis. However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!