We investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase alpha-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and N-butyldeoxynojirimycin (NB-DNJ), on residual GAA activity in fibroblasts from eight patients with different forms of Pompe disease (two classic infantile, two non-classic infantile onset, four late-onset forms), and with different mutations of the GAA gene. We demonstrated a significant increase of GAA activity (1.3-7.5-fold) after imino sugar treatment in fibroblasts from patients carrying the mutations L552P (three patients) and G549R (one patient). GAA enhancement was confirmed in HEK293T cells where the same mutations were overexpressed. No increase of GAA activity was observed for the other mutations. Western blot analysis showed that imino sugars increase the amount of mature GAA molecular forms. Immunofluorescence studies in HEK293T cells overexpressing the L552P mutation showed an improved trafficking of the mutant enzyme to lysosomes after imino sugar treatment. These results provide a rationale for an alternative treatment, other than enzyme replacement, to Pompe disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.mt.6300074 | DOI Listing |
Int J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Pompe disease is a neuromuscular disorder caused by a deficiency of the enzyme acid alpha-glucosidase (), which leads to lysosomal glycogen accumulation and progressive development of muscle weakness. Two distinct isoforms have been identified. In the infantile form, the weakness is often severe and leads to motor difficulties from the first few months of life.
View Article and Find Full Text PDFBiomedicines
January 2025
Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
An intriguing aspect of restrictive cardiomyopathies (RCM) is the microbiome role in the natural history of the disease. These cardiomyopathies are often difficult to diagnose and so result in significant morbidity and mortality. The human microbiome, composed of billions of microorganisms, influences various physiological and pathological processes, including cardiovascular health.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt.
Background: Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals.
Methods: The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations.
Protein Eng Des Sel
January 2025
Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.
Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.
View Article and Find Full Text PDFInt J Neonatal Screen
December 2024
RTI International, 3040 E. Cornwallis Road, Research Triangle Park, P.O. Box 12194, Research Triangle Park, NC 27709, USA.
Newborn screening (NBS) presents an opportunity to identify a subset of babies at birth who are at risk for developmental delays and could benefit from a range of developmental services. Potential developmental services in the United States include Part C Early Intervention (EI), private therapies, and school-based services. Using parent-reported outcomes, this study examined the rates at which a sample of children diagnosed with NBS conditions used each developmental service.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!