Bacterial strain KU-15, identified as a Burkholderia terrae by 16S rRNA gene sequence analysis, was one of 11 new isolates that grew on 2-nitrobenzoate as sole source of carbon and nitrogen. Strain KU-15 was also found to grow on anthranilate, 4-nitrobenzoate, and 4-aminobenzoate. Whole cells of strain KU-15 were found to accumulate ammonia in the medium, indicating that the degradation of 2-nitrobenzoate proceeds through a reductive route. Metabolite analyses by high-performance liquid chromatography indicated that 3-hydroxyanthranilate, anthranilate, and catechol are intermediates of 2-nitrobenzoate metabolism in strain KU-15. Enzyme studies suggested that 2-nitrobenzoate degradation occurs via the formation of 2-hydroxylaminobenzoate and that the pathway branches at this point to form two different aromatic intermediates: anthranilate and 3-hydroxyanthranilate. PCR amplifications and DNA sequencing revealed DNA fragments encoding a polypeptide homologous to 2-amino-3-carboxymuconate 6-semialdehyde decarboxylase and anthranilate 1,2-dioxygenase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1271/bbb.60419 | DOI Listing |
J Biosci Bioeng
January 2024
Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. Electronic address:
Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P.
View Article and Find Full Text PDFMicrobiol Resour Announc
July 2022
Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan.
Paraburkholderia terrae strain KU-15 has been investigated for its ability to degrade 2-nitrobenzoate. Here, we report the complete 10,422,345-bp genome of this microorganism, which consists of six circular replicons containing 9,483 protein-coding sequences. The genome carries genes that are potentially responsible for 2-nitrobenzoate and 4-nitirobenzoate degradation.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
January 2007
Department of Biotechnology, Faculty of Engineering, Kansai University, Japan.
Bacterial strain KU-15, identified as a Burkholderia terrae by 16S rRNA gene sequence analysis, was one of 11 new isolates that grew on 2-nitrobenzoate as sole source of carbon and nitrogen. Strain KU-15 was also found to grow on anthranilate, 4-nitrobenzoate, and 4-aminobenzoate. Whole cells of strain KU-15 were found to accumulate ammonia in the medium, indicating that the degradation of 2-nitrobenzoate proceeds through a reductive route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!