Objective: Infection is a major cause of mortality in the first year following single lung transplantation and is a distinct risk factor for the development of obliterative bronchiolitis. However, little is known about changes in pulmonary vascular activity in the setting of infection, which might affect and limit function of the graft. Therefore, the aim of this study was to determine how acute infection altered pulmonary arterial reactivity in single lung allografts. Such information could help to develop better diagnostic and therapeutic targets to improve outcome when grafts become infected.

Methods: Following single lung transplantation, dogs were immunosuppressed with methylprednisolone acetate, cyclosporine and azathioprine. On postoperative day 5, infection was induced in one group of dogs by endobronchial inoculation of antibiotic resistant Eschericia coli (infection group, n=5); in the second group, the same amount of culture media without bacteria was flushed into the bronchus (control group, n=4). All animals were medicated under the same drug protocol. On postoperative day 8, lungs were removed, reviewed for histological assessment, pulmonary arteries were isolated, cut into rings and suspended for pharmacological characterization in organ chambers.

Results: With acute infections, contractions to phenylephrine and angiotensin-1, but not endothelin-1, were reduced in pulmonary arteries with but not without endothelium. Inhibition of nitric oxide synthase with N(G)-monomethyl-L-arginine, monoacetate salt (L-NMMA) restored these contractions. Endothelium-dependent relaxations to adenosine diphosphate and calcium ionophore, which stimulate release of endothelium-derived nitric oxide by a receptor and non-receptor mediated process, respectively, were not different between groups. Relaxations to nitric oxide also were not different between groups.

Conclusion: These results suggest that acute infection selectively reduces contractions of pulmonary arteries in part through receptor-mediated release of nitric oxide from the endothelium. Inhibiting nitric oxide during episodes of acute infection may help to improve graft perfusion during episodes of acute infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejcts.2006.11.051DOI Listing

Publication Analysis

Top Keywords

nitric oxide
20
single lung
16
acute infection
16
pulmonary arteries
12
infection
9
pulmonary arterial
8
arterial reactivity
8
lung allografts
8
lung transplantation
8
postoperative day
8

Similar Publications

Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Background: Chronic soft tissue injury is characterized by sterile inflammation and pain. Gua sha with Masanggoubang oil (GSMO) treatment has been found to possess anti-inflammatory and analgesic effects.

Objectives: To explore the mechanism of GSMO in chronic soft tissue injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!