Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By the analysis of the recently sequenced genomes of Group B Streptococcus (GBS) we have identified a novel immunogenic adhesin with anti-phagocytic activity, named BibA. The bibA gene is present in 100% of the 24 GBS strains analysed. BibA-specific IgG were found in human sera from normal healthy donors. The putative protein product is a polypeptide of 630 amino acids containing a helix-rich N-terminal domain, a proline-rich region and a canonical LPXTG cell wall-anchoring domain. BibA is expressed on the surface of several GBS strains, but is also recovered in GBS culture supernatants. BibA specifically binds to human C4-binding protein, a regulator of the classic complement pathway. Deletion of the bibA gene severely reduced the capacity of GBS to survive in human blood and to resist opsonophagocytic killing by human neutrophils. In addition, BibA expression increased the virulence of GBS in a mouse infection model. The role of BibA in GBS adhesion was demonstrated by the impaired ability of a bibA knockout mutant strain to adhere to both human cervical and lung epithelial cells. Furthermore, we calculated that recombinant BibA bound to human epithelial cells of distinct origin with an affinity constant of approximately 10(-8) M for cervical epithelial cells. Hence BibA is a novel multifunctional protein involved in both resistance to phagocytic killing and adhesion to host cells. The identification of this potential new virulence factor represents an important step in the development of strategies to combat GBS-associated infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2006.05555.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!