The cryptomonads are an enigmatic group of unicellular eukaryotic algae that possess two nuclear genomes, having acquired photosynthesis by the uptake and retention of a eukaryotic algal endosymbiont. The endosymbiont nuclear genome, or nucleomorph, of the cryptomonad Guillardia theta has been completely sequenced: at only 551 kilobases (kb) and with a gene density of approximately 1 gene/kb, it is a model of compaction. In contrast, very little is known about the structure and composition of the cryptomonad host nuclear genome. Here we present the results of two small-scale sequencing surveys of fosmid clone libraries from two distantly related cryptomonads, Rhodomonas salina CCMP1319 and Cryptomonas paramecium CCAP977/2A, corresponding to approximately 150 and approximately 235 kb of sequence, respectively. Very few of the random end sequences determined in this study show similarity to known genes in other eukaryotes, underscoring the considerable evolutionary distance between the cryptomonads and other eukaryotes whose nuclear genomes have been completely sequenced. Using a combination of fosmid clone end-sequencing, Southern hybridizations, and PCR, we demonstrate that Ty3-gypsy long-terminal repeat (LTR) retrotransposons and tandem repeat sequences are a prominent feature of the nuclear genomes of both organisms. The complete sequence of a 30.9-kb genomic fragment from R. salina was found to contain a full-length Ty3-gypsy element with near-identical LTRs and a chromodomain, a protein module suggested to mediate the site-specific integration of the retrotransposon. The discovery of chromodomain-containing retroelements in cryptomonads further expands the known distribution of the so-called chromoviruses across the tree of eukaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-006-0088-9 | DOI Listing |
PLoS One
January 2025
Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Legnaro, Italy.
Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.
View Article and Find Full Text PDFPLoS Genet
January 2025
Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Italy.
The reversible glycosylation of nuclear and cytoplasmic proteins (O-GlcNAcylation) is catalyzed by a single enzyme, namely O-GlcNAc transferase (OGT). The mammalian Ogt gene is X-linked, and it is essential for embryonic development and for the viability of proliferating cells. We perturbed OGT's function in vivo by creating a murine allelic series of four single amino acid substitutions, reducing OGT's catalytic activity to a range of degrees.
View Article and Find Full Text PDFBiol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dokuz Eylul University Hospital Neurology Department, Izmir, Turkey.
Background: Early-onset Alzheimer's disease (EOAD), manifesting before age 65, demands nuanced diagnostic approaches. FDG18-PET unveils metabolic insights, the MRI scale captures structural changes, and ACE-R assesses cognitive impairment details. A holistic evaluation enhances diagnostic precision and enriches our understanding of cognitive decline in early-onset presentations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!