Genetic dissection of attractant-induced conductances in Paramecium.

J Exp Biol

Department of Biology, 203 Science Building, Virginia Military Institute, Lexington, VA 24450, USA.

Published: January 2007

Paramecium tetraurelia is attracted to acetate and biotin by swimming smoothly and fast up gradients of these attractants, and turning immediately and slowing down when leaving these stimuli. We use a group of mutants, each with a different defect in an identified ion conductance, to show that these two stimuli open different ion channels, and the behaviors that occur upon application of stimulus (on-response) and removal of stimulus (off-response) have different roles in attraction to these two stimuli. The most important parameters for successful attraction to acetate are the on-response behaviors of fast swimming with few turns, and the mutants' behavior suggests that I(K(Ca,h)) is the conductance involved that initiates this behavior. I(K(Ca,h or d)) appears to be important to the on-response in biotin; the results with mutants suggest that the biotin off-response depolarization is initiated by an I(Ca), which can be large enough or close enough to channels to open I(K(Ca,d)), I(Na(Ca)) and I(Mg(Ca)).

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.02642DOI Listing

Publication Analysis

Top Keywords

genetic dissection
4
dissection attractant-induced
4
attractant-induced conductances
4
conductances paramecium
4
paramecium paramecium
4
paramecium tetraurelia
4
tetraurelia attracted
4
attracted acetate
4
acetate biotin
4
biotin swimming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!