Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age.

J Exp Biol

Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA.

Published: January 2007

A defining physiological capability for air-breathing marine vertebrates is the amount of oxygen that can be stored in tissues and made available during dives. To evaluate the influence of oxygen storage capacity on aerobic diving capacity, we examined the extent to which blood and muscle oxygen stores varied as a function of age, body size and sex in the sexually dimorphic California sea lion, Zalophus californianus. We measured total body oxygen stores, including hematocrit, hemoglobin, MCHC, plasma volume, blood volume and muscle myoglobin in pups through adults of both sexes. Blood and muscle oxygen storage capacity was not fully developed by the end of the dependency period, with blood stores not fully developed until animals were larger juveniles (70 kg; 1.5-2.5 years) and muscle stores not until animals were sub-adult size (125 kg; 4-6 years). Differences in aerobic diving capacity among size classes were reflective of these major milestones in the development of oxygen stores. Male sea lions had greater absolute blood volume than females and reflected the larger mass of males, which became apparent when animals were large juveniles. Adult female sea lions had greater muscle myoglobin concentrations compared to males, resulting in greater mass-specific muscle and total oxygen stores. Delayed development of oxygen stores is consistent with the shallow epi-mesopelagic foraging behavior in this species. We hypothesize that the greater mass-specific oxygen stores of female sea lions compared to males is related to differences in foraging behavior between the sexes.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.02643DOI Listing

Publication Analysis

Top Keywords

oxygen stores
28
sea lions
16
diving capacity
12
oxygen
10
stores
9
total body
8
body oxygen
8
california sea
8
oxygen storage
8
storage capacity
8

Similar Publications

Interfacial Properties of Gold and Cobalt Oxyhydroxide in Plasmon-Mediated Oxygen Evolution Reaction.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.

Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.

View Article and Find Full Text PDF

Research on low dissolved oxygen (DO) enhanced biological phosphorus removal (EBPR) at full-scale remains limited, a knowledge gap this study aims to fill by investigating EBPR performance and microbial community shifts at a Water Resource Recovery Facility (WRRF) transitioning to low DO conditions. Average DO concentrations decreased from 2.62 mg O/L in 2019 to 0.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Silica-Activated Redox Signaling Confers Rice with Enhanced Drought Resilience and Grain Yield.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.

View Article and Find Full Text PDF

The cooling procedure markedly diminishes the quality of guinea pig () sperms, primarily because their membranes are highly susceptible to this process. This susceptibility triggers the generation of reactive oxygen species and free radicals, ultimately leading to lipid peroxidation in the sperm membrane. Surprisingly, there has been a lack of research on the use of Tris-based extenders to safeguard guinea pig sperm under refrigeration conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!