Neural stem cells and progenitor cells migrate selectively to tumor loci in vivo. We exploited the tumor-tropic properties of HB1.F3.C1 cells, an immortalized cell line derived from human fetal telencephalon, to deliver the cDNA encoding a secreted form of rabbit carboxylesterase (rCE) to disseminated neuroblastoma tumors in mice. This enzyme activates the prodrug CPT-11 more efficiently than do human enzymes. Mice bearing multiple tumors were treated with rCE-expressing HB1.F3.C1 cells and schedules of administration of CPT-11 that produced levels of active drug (SN-38) tolerated by patients. Both HB1.F3.C1 cells and CPT-11 were given i.v. None of the untreated mice and 30% of mice that received only CPT-11 survived long term. In contrast, 90% of mice treated with rCE-expressing HB1.F3.C1 cells and 15 mg/kg CPT-11 survived for 1 year without detectable tumors. Plasma carboxylesterase activity and SN-38 levels in mice receiving both rCE-expressing HB1.F3.C1 cells (HB1.F3.C1/AdCMVrCE) and CPT-11 were comparable with those in mice receiving CPT-11 only. These data support the hypothesis that the antitumor effect of the described neural stem/progenitor cell-directed enzyme prodrug therapy (NDEPT) is mediated by production of high concentrations of active drug selectively at tumor sites, thereby maximizing the antitumor effect of CPT-11. NDEPT approaches merit further investigation as effective, targeted therapy for metastatic tumors. We propose that the described approach may have greatest use for eradicating minimum residual disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-06-3607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!