Bloom's syndrome is a genetic disorder characterized by increased incidence of cancer and an immunodeficiency of unknown origin. The BLM gene mutated in Bloom's syndrome encodes a DNA helicase involved in the maintenance of genomic integrity. To explore the role of BLM in the immune system, we ablated murine Blm in the T-cell lineage. In the absence of Blm, thymocytes were severely reduced in numbers and displayed a developmental block at the beta-selection checkpoint that was partially p53 dependent. Blm-deficient thymocytes rearranged their T-cell receptor (TCR) beta genes normally yet failed to survive and proliferate in response to pre-TCR signaling. Furthermore, peripheral T cells were reduced in numbers, manifested defective homeostatic and TCR-induced proliferation, and produced extensive chromosomal damage. Finally, CD4(+) and CD8(+) T-cell responses were impaired upon antigen challenge. Thus, by ensuring genomic stability, Blm serves a vital role for development, maintenance, and function of T lymphocytes, suggesting a basis for the immune deficiency in Bloom's syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820471 | PMC |
http://dx.doi.org/10.1128/MCB.01402-06 | DOI Listing |
Nat Chem Biol
January 2025
Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The regressed arms of reversed replication forks exhibit structural similarities to one-ended double-stranded breaks and need to be protected against uncontrolled nucleolytic degradation. Here, we identify MSANTD4 (Myb/SANT-like DNA-binding domain-containing protein 4), a functionally uncharacterized protein that uniquely counters the replication protein A (RPA)-Bloom (BLM)/Werner syndrome helicase (WRN)-DNA replication helicase/nuclease 2 (DNA2) complex to safeguard reversed replication forks from detrimental degradation, independently of the breast cancer susceptibility proteins (BRCA1/2)-DNA repair protein RAD51 pathway. MSANTD4 specifically interacts with the junctions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in DNA substrates harboring a 3' overhang, which resemble the structural features of regressed arms processed by WRN-DNA2.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.
View Article and Find Full Text PDFPediatr Pulmonol
January 2025
Department of Pediatrics & Kawasaki Disease Research Center, University of California San Diego (UCSD) & Rady Children's Hospital, San Diego, California, USA.
Importance: There is growing understanding that Social Determinants of Health (SDH) impact on the outcomes of different pediatric conditions. We aimed to determine whether SDH affect the severity of MIS-C.
Design: Retrospective cohort study, 2021-2023.
Environ Toxicol Pharmacol
January 2025
Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, USA; James A. Haley VA Hospital, Tampa, FL, USA.
Introduction: The harmful alga Karenia brevis (K. brevis) releases brevetoxins (PbTx) that cause respiratory and neurological symptoms. The apolipoprotein E (APOE) ε4 allele has been linked to poor neurological outcomes after exposure to environmental toxicants.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!