The anti-oxidant lipoic acid (LA) potently suppresses clinical and pathologic disease in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis, by inhibiting the migration of pathogenic T cells to the spinal cord. The mechanism by which this occurs is largely unknown. In this report we demonstrate that LA induces increases in cyclic AMP, a known immunosuppressant, in human T cells. The increase in cAMP is associated with increased adenylyl cyclase activity and is partially blocked by prostanoid receptor antagonists. We present evidence that LA also stimulates cAMP production in natural killer (NK) cells. This novel mechanism of action is highly relevant to the immunomodulatory effects of LA and provides further support for the study of LA as a therapeutic agent for multiple sclerosis and other autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278348 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2006.12.195 | DOI Listing |
Int J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Jiangsu Provincial Key Medical Discipline, Nanjing University Medical School, Nanjing, 210008, China.
Cisplatin-induced ototoxicity is attributed to the aberrant accumulation of reactive oxygen species (ROS) within the inner ear. Antioxidants represented by α-lipoic acid (ALA) have been demonstrated to scavenge ROS in the cochlea, while effective delivery of these agents in vivo remains a major challenge. Here, a novel polydopamine (PDA) nanogel decorated adhesive and responsive hierarchical microcarriers for controllable is presented ALA delivery and deafness prevention.
View Article and Find Full Text PDFNutr Rev
January 2025
Universidad Europea de Madrid, Department of Physiotherapy, Faculty of Medicine, Health and Sports, 28670 Villaviciosa de odón, Madrid, Spain.
Context: Migraines are a prevalent neurological condition that significantly impacts the quality of life. Although narrative reviews and clinical trials suggest the potential effects of fatty acid supplementation as a promising approach for migraine prophylaxis, the findings remain inconsistent.
Objective: The aim was to evaluate the efficacy of fatty acid supplementation on migraine clinical outcomes through a systematic review and meta-analysis.
Curr Ther Res Clin Exp
November 2024
Laboratorio de Oncología Celular y Molecular. Departamento de Oncología Básico-Clínica. Facultad de Medicina. Universidad de Chile, Santiago, Chile.
Background: Leukotriene B (LTB) plays a crucial role in carcinogenesis by inducing epithelial-mesenchymal transition (EMT), a process associated with tumor progression. The synthesis of LTB is mediated by leukotriene A hydrolase (LTAH), and it binds to the receptors BLT and BLT. Dysregulation in LTB production is linked to the development of various pathologies.
View Article and Find Full Text PDFToxicol Rep
June 2025
Era College of Pharmacy, Era University, Sarfarajgung, Lucknow-Hardoi Road, Lucknow, Uttar Pradesh, India.
Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!