Background: Oxidative stress has been recently suggested to play a part in the development of osteoporosis. Catalase is a major antioxidant enzyme that detoxifies hydrogen peroxide by converting it into water and oxygen, thereby preventing cellular injury by oxidative stress.

Aims: To examine the associations between the catalase gene (CAT) polymorphisms and bone mineral density (BMD) and bone turnover markers in postmenopausal Korean women.

Methods: All exons, their boundaries and the promoter region (approximately 1.5 kb) were directly sequenced in 24 individuals. Among 18 variants identified by a direct sequence method, four polymorphisms were selected and genotyped in all study participants (n = 560). BMD at the lumbar spine and proximal femur was measured using dual-energy x ray absorptiometry. Serum osteocalcin concentrations and bone-specific alkaline phosphatase activity were determined by an immunoradiometric assay and an immunoassay, respectively.

Results: The mean (standard deviation) age of the participants was 59.4 (7.2) years. Multivariate analysis showed an association of the +22348C-->T polymorphism with BMD at the lumbar spine (p = 0.01 in the dominant model) and at femur neck (p = 0.05 in the dominant model), and with serum osteocalcin level (p = 0.008 in the dominant model). Haplotype analyses showed that HT4 (-20T, +144C, +22348T, +33078A) was significantly associated with higher BMD at various sites (p<0.001-0.03) and with lower serum osteocalcin levels (p = 0.01 in the codominant model).

Conclusions: These findings indicate that the +22348C-->T polymorphism and HT4 of CAT may be useful genetic markers for bone metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597917PMC
http://dx.doi.org/10.1136/jmg.2006.042259DOI Listing

Publication Analysis

Top Keywords

dominant model
12
associations catalase
8
catalase gene
8
polymorphisms bone
8
bone mineral
8
mineral density
8
bone turnover
8
turnover markers
8
markers postmenopausal
8
bmd lumbar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!