The S-layer of the gram-negative bacterium Caulobacter crescentus is composed of a single protein, RsaA, that is secreted and assembled into a hexagonal crystalline array that covers the organism. Despite the widespread occurrence of comparable bacterial S-layers, little is known about S-layer attachment to cell surfaces, especially for gram-negative organisms. Having preliminary indications that the N terminus of RsaA anchors the monomer to the cell surface, we developed an assay to distinguish direct surface attachment from subunit-subunit interactions where small RsaA fragments are incubated with S-layer-negative cells to assess the ability of the fragments to reattach. In doing so, we found that the RsaA anchoring region lies in the first approximately 225 amino acids and that this RsaA anchoring region requires a smooth lipopolysaccharide species found in the outer membrane. By making mutations at six semirandom sites, we learned that relatively minor perturbations within the first approximately 225 amino acids of RsaA caused loss of anchoring. In other studies, we confirmed that only this N-terminal region has a direct role in S-layer anchoring. As a by-product of the anchoring studies, we discovered that Sap, the C. crescentus S-layer-associated protease, recognized a cleavage site in the truncated RsaA fragments that is not detected by Sap in full-length RsaA. This, in turn, led to the discovery that Sap was an extracellular membrane-bound protease, rather than intracellular, as previously proposed. Moreover, Sap was secreted to the cell surface primarily by the S-layer type I secretion apparatus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1899406 | PMC |
http://dx.doi.org/10.1128/JB.01690-06 | DOI Listing |
Front Mol Biosci
September 2024
Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria.
bioRxiv
September 2024
Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
Front Microbiol
October 2023
Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States.
Sci Rep
August 2023
NanoGlycobiology Research Group, Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190, Vienna, Austria.
Pyruvylation is a biologically versatile but mechanistically unexplored saccharide modification. 4,6-Ketal pyruvylated N-acetylmannosamine within bacterial secondary cell wall polymers serves as a cell wall anchoring epitope for proteins possessing a terminal S-layer homology domain trimer. The pyruvyltransferase CsaB from Paenibacillus alvei served as a model to investigate the structural basis of the pyruvyltransfer reaction by a combination of molecular modelling and site-directed mutagenesis together with an enzyme assay using phosphoenolpyruvate (PEP; donor) and synthetic β-D-ManNAc-(1 → 4)-α-D-GlcNAc-diphosphoryl-11-phenoxyundecyl (acceptor).
View Article and Find Full Text PDFMicrobiology (Reading)
April 2023
Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - CNRS, UMR 7255, Marseille, France.
The type IX secretion system (T9SS) is a multiprotein machine distributed in and responsible for the secretion of various proteins across the outer membrane. Secreted effectors can be either delivered into the medium or anchored to the cell surface. The T9SS is composed of a transenvelope complex consisting of proton-motive force-dependent motors connected to a membrane-associated ring and outer membrane translocons, and a cell-surface anchoring complex that processes effectors once translocated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!