Toll-like receptors (TLRs) play a crucial role in the initiation of innate responses following microbial infection and also in adaptive immune responses by orchestrating the activation of different cell populations. TLRs are expressed at high levels in antigen-presenting cells and recent studies have demonstrated the expression and biological role of TLRs in mouse and human CD4(+) T cells. In this study, we analyzed TLR mRNA expression in rat CD4(+) T cells using stringent quantitative reverse transcription-PCR conditions enabling a direct comparison of the levels of each TLR. We show that TLR3, 5, 6 and 9 mRNAs are the highest TLRs expressed in rat CD4(+) T cells and that TLR5 mRNA is highly expressed in regulatory CD4(+) CD25(+) T cells. In addition, we show that the TLR9 ligand (TLR9L), CpG oligodeoxynucleotide, synergizes with anti-CD3 to induce proliferation of both CD4(+) CD25(-) and regulatory CD4(+) CD25(+) T cells and that TLR9L partially abrogates the suppressive activity mediated by regulatory CD4(+) CD25(+) T cells. This loss of suppression is in part due to the direct effect of TLR9L on effector T cells that are rendered more resistant to the regulation exerted by regulatory T cells. To our knowledge, this is the first study describing the expression of TLR mRNA in rat CD4(+) T cells and the capacity of TLR9L to directly regulate rat T cell responses. Thus, TLR9L may rapidly increase the host's adaptive immunity by expanding effector cells and also by attenuating the suppressive activity mediated by regulatory T cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxl136 | DOI Listing |
Int J Mol Sci
January 2025
Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University School of Medicine, 701 West Main Street, Suite 510, Duke, P.O. Box 90534, Durham, NC 27701, USA.
The mortality rate of ovarian cancer (OC) remains the highest among female gynecological malignancies. Advanced age is the highest risk factor for OC development and progression, yet little is known about the role of the aged tumor microenvironment (TME). We conducted RNA sequencing and lipidomic analysis of young and aged gonadal adipose tissue from rat xenografts before and after OC formation.
View Article and Find Full Text PDFImmunology
January 2025
National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
Insights into the underlying immunological mechanisms of prophylactic sublingual immunotherapy (SLIT) may support the development of new strategies for improved prevention and treatment of food allergy. Here, we investigated the humoral, regulatory and sublingual tissue immune response to prophylactic SLIT administration of a single purified peanut allergen in Brown Norway (BN) rats. BN rats received daily sublingual administration of peanut allergen Ara h 6 for three weeks.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Center for Advanced Technologies, Tashkent 100174, Uzbekistan.
The development of effective and safe vaccines and their timely delivery to the public play a crucial role in preventing and managing infectious diseases. Many vaccines have been produced and distributed globally to prevent COVID-19 infection. However, establishing effective vaccine development platforms and evaluating their safety and immunogenicity remains critical to increasing health security, especially in developing countries.
View Article and Find Full Text PDFLipid nanoparticles (LNP) are the most clinically advanced non-viral gene delivery system. While progress has been made for enhancing delivery, cell specific targeting remains a challenge. Targeting moieties such as antibodies can be chemically-conjugated to LNPs however, this approach is complex and has challenges for scaling up.
View Article and Find Full Text PDFWorld J Stem Cells
December 2024
Department of Ultrasonic, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.
Background: Heart transplantation is a crucial intervention for severe heart failure, yet the challenge of organ rejection is significant. Bone marrow mesenchymal stem cells (BMSCs) and their exosomes have demonstrated potential in modulating T cells, dendtitic cells (DCs), and cytokines to achieve immunomodulatory effects. DCs, as key antigen-presenting cells, play a critical role in shaping immune responses by influencing T-cell activation and cytokine production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!