Somatosensory-evoked potentials indicate increased unpleasantness of noxious stimuli in response to increasing stimulus intensities in the rat.

Brain Res Bull

Department of Clinical Sciences of Companion Animals, Division Anesthesiology and Neurophysiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.154, Yalelaan 8, NL-3508 TD Utrecht, The Netherlands.

Published: January 2007

Recently, it has been shown in rats that specific characteristics of somatosensory-evoked potentials (SEPs) recorded from different sites on the scalp correlate differently to the amount of unpleasantness experienced by the animal following noxious stimulation. It was shown that the SEP recorded from vertex (Vx-SEP) did correlate with the unpleasantness, whereas the SEP recorded from the primary somatosensory cortex (SI-SEP) did not. In the present study, we further investigated the relationship between the Vx-SEP, SI-SEP and the unpleasantness of noxious stimuli. Therefore, different groups of rats were subjected to a SEP fear-conditioning paradigm in which the unconditioned stimulus (US), represented by noxious stimuli applied to evoke SEPs, was paired to a conditioned stimulus (CS) represented by a tone. Different stimulus intensities of the US were applied in the different groups. After CS-US presentation, CS-induced fear-conditioned behaviour was analysed in relation to the characteristics of the Vx- and SI-SEP during CS-US presentation. Results showed that increasing stimulus intensities led to increased SEP amplitudes, which were paralleled by an increased amount of CS-induced fear-conditioned behaviour. No differences between Vx-SEP and SI-SEP were found. The increase in the SEPs in parallel with the increased amount of fear-induced behaviour further supports the SEP to be a potentially valuable tool for studying acute pain and analgesia in animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2006.10.009DOI Listing

Publication Analysis

Top Keywords

noxious stimuli
12
stimulus intensities
12
somatosensory-evoked potentials
8
unpleasantness noxious
8
increasing stimulus
8
sep recorded
8
vx-sep si-sep
8
stimulus represented
8
cs-us presentation
8
cs-induced fear-conditioned
8

Similar Publications

The sensory/discriminative domain of pain is often given more consideration than the cognitive and affective influences that ultimately make pain what it is: a highly subjective experience that is based on an individual's life history and experiences. While many investigations of the underlying mechanisms of pain have focused on solely noxious stimuli, few have compared somatosensory stimuli that cross the boundary from innocuous to noxious. Of those that have, there is little consensus on the similarities and differences in neural signaling across these sensory domains.

View Article and Find Full Text PDF

Introduction: The development of stress-related psychopathologies, often associated with socio-emotional dysfunctions, is crucially determined by genetic and environmental factors, which shape the individual vulnerability or resilience to stress. Especially early adolescence is considered a vulnerable time for the development of psychopathologies. Various mouse strains are known to age-dependently differ in social, emotional, and endocrine stress responses based on genetic and epigenetic differences.

View Article and Find Full Text PDF

Surgeries are situations that endanger bodily integrity. The concept expressed by the term coined by Sherrington encompasses the perception of noxious stimuli and the organization of response to them. To understand the condition of the brain in which anesthesia is performed it is important to review new results of the neurophysiology of nociception.

View Article and Find Full Text PDF

The neural mechanisms of the affective-motivational symptoms of chronic pain are poorly understood. In chronic pain, our innate coping mechanisms fail to provide relief. Hence, these behaviors are manifested at higher frequencies.

View Article and Find Full Text PDF

Distinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!