A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intravascular administration of tumor tropic neural progenitor cells permits targeted delivery of interferon-beta and restricts tumor growth in a murine model of disseminated neuroblastoma. | LitMetric

Background: Interferon-beta (IFN-beta) has potent antitumor activity; however, systemic toxicity has limited its clinical use. We investigated the potential of targeted delivery using tumor-tropic neural progenitor cells (NPCs) transduced to express human IFN-beta (hIFN-beta).

Methods: Disseminated neuroblastoma was established in SCID mice by tail vein injection of tumor cells. Fourteen days after tumor cell inoculation, systemic disease was confirmed with bioluminescence imaging (BLI). Mice were then treated by intravenous injection of human F3.C1 NPCs that had been transduced with a replication deficient adenovirus to overexpress hIFN-beta (F3-IFN-beta). Two injections were given: the first at 14 days and the second at 28 days following tumor cell injection. Control mice received NPCs transduced with empty vector adenovirus at the same time points. Progression of disease was monitored using BLI. At sacrifice, organ weights and histology further evaluated tumor burden.

Results: After initiation of therapy, BLI demonstrated a significant decrease in the rate of disease progression in mice receiving F3-IFN-beta. At necropsy, control mice had bulky tumor replacing the liver and kidneys, as well as extensive retroperitoneal and mediastinal adenopathy. Impressively, these sites within mice receiving F3-IFN-beta therapy appeared grossly normal with the exception of small nodules within the kidneys of some of the F3-IFN-beta-treated mice. The accumulation of F3.C1 cells within sites of tumor growth was confirmed by fluorescence imaging. Importantly, systemic levels of hIFN-beta in the treated mice remained below detectable levels.

Conclusions: These data indicate that in this model of disseminated neuroblastoma, the tumor-tropic property of F3.C1 NPCs was exploited to target delivery of IFN-beta to disseminated tissue foci, resulting in significant tumor growth delay. The described novel approach for effective IFN-beta therapy may circumvent limitations associated with the systemic toxicity of IFN-beta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpedsurg.2006.09.050DOI Listing

Publication Analysis

Top Keywords

tumor growth
12
disseminated neuroblastoma
12
npcs transduced
12
tumor
9
neural progenitor
8
progenitor cells
8
targeted delivery
8
model disseminated
8
systemic toxicity
8
mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!