A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative analysis on volcanic ash surfaces: application of extended depth-of-field (focus) algorithm for light and scanning electron microscopy and 3D reconstruction. | LitMetric

The depth-of-field mainly affects the image quality either in scanning electron microscopy (SEM) or conventional light microscopy. The limited depth-of-field handicap of microscopy imaging can be used for obtaining "optically sectioned" specimens by moving the object along the optical axis. In this study, multiple images corresponding to different object planes were taken in order to overcome limited depth-of-field on conventional light microscope and SEM, estimation of an elevation surface and 3D reconstruction of different type volcanic ash surfaces. We used extended depth-of-field, a fusion algorithm that combines those images into one single sharp composite. Because of larger depth-of-field, we got higher-quality results even with image stacks taken by SEM with a fixed aperture in variable pressure mode. We calculated roughness descriptors, quadtree decomposition and greylevel standard deviation (sGL) and analyzed the shape of polar plots based on gradient analysis of constructed depth-maps. Furthermore, we calculated fractal dimensions of surfaces. Correlation analysis was performed to measure how these quantitative variables are related with different type ash surfaces. Roughness descriptors, quadtree decomposition, sGL and fractal dimension discriminate different types of volcanic ash surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2006.11.010DOI Listing

Publication Analysis

Top Keywords

ash surfaces
16
volcanic ash
12
extended depth-of-field
8
scanning electron
8
electron microscopy
8
conventional light
8
limited depth-of-field
8
roughness descriptors
8
descriptors quadtree
8
quadtree decomposition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!