Brain ECF antioxidant interactions in hamsters during arousal from hibernation.

Behav Brain Res

Institute of Life Sciences, National Taitung University, Taitung 950, Taiwan.

Published: March 2007

Warming from hibernation to cenothermia involves intense metabolic activity and large fluxes in regional blood flow and volume. During this transition, levels of the antioxidants, ascorbate (AA), urate and glutathione (GSH) in brain tissue, extracellular fluid (ECF) and plasma change substantially. Striatal ECF was sampled and manipulated using very slow perfusion microdialysis to examine the mechanisms that influence the changing profile of striatal ECF AA, urate and GSH levels during arousal from hibernation to cenothermia in Syrian hamsters (Mesocricetus auratus). Omission of glucose from the perfusate had no effect upon the respective decrease, increase and transient increase in striatal ECF levels of AA, GSH and urate observed during arousal from hibernation to cenothermia. In contrast, inhibition of xanthine dehydrogenase/oxidase (XOR) activity by reverse dialysis with oxypurinol, itself a free radical scavenger, decreased ECF urate and preserved ECF AA levels. This suggests that some ECF AA is oxidized by free radical products of XOR flux and/or by other free radical producing processes activated during the transition from hibernation to cenothermia. Local supplementation of ECF AA, GSH and cystiene had no effect upon the profile of transient increase of ECF urate observed during arousal from hibernation. The production of free radicals by XOR and the disappearance of AA from the ECF continues for at least 2h immediately after the hamster has attained cenothermia. The hamster, immediately after arousal from hibernation, can be utilized as a natural model to study free radical production and effective scavenging at cenothermia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2006.12.006DOI Listing

Publication Analysis

Top Keywords

arousal hibernation
20
hibernation cenothermia
16
free radical
16
striatal ecf
12
ecf urate
12
ecf
10
transient increase
8
ecf levels
8
urate observed
8
observed arousal
8

Similar Publications

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

Hibernation enhances contractile responses of basilar artery in ground squirrels: The role of Rho-kinase and NO.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Physiology and Pathology, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia.

Hibernation is accompanied by dramatic decrease of blood flow in many organs due to the increase of their vascular resistances. We compared the responses of mesenteric, renal, and cerebral proximal resistance arteries in summer active (SA) and winter hibernating (WH) ground squirrels and studied the signaling pathways of Rho-kinase and NO. Wire myography and Western blotting were used to assess the arterial responses and protein abundances.

View Article and Find Full Text PDF

Hibernating mammals experience severe hemodynamic changes over the torpor-arousal cycle, with oxygen consumption reaching peaks during the early stage of torpor to re-enter arousal. Melatonin (MT) can improve mitochondrial function and reduce oxidative stress and inflammation. However, the regulatory mechanisms of MT action on the vascular protective function of hibernators are still unclear.

View Article and Find Full Text PDF

The tricolored bat (), once common in the eastern United States, has experienced significant mortality due to white-nose syndrome (WNS), a fungal disease that primarily affects bats hibernating in caves and mines. In coastal regions of the southeastern United States, where caves and mines are scarce, tricolored bats often use roadway culverts as hibernacula. However, WNS infection dynamics in culverts are poorly understood.

View Article and Find Full Text PDF

Cyclic hibernation bouts in Daurian ground squirrels (Spermophilus dauricus) lead to repeated suppression and recovery of mitochondrial respiratory function across multiple organs, potentially impacting reactive oxygen species (ROS) dynamics. The Harderian gland (HG) plays an important role in endocrine regulation through porphyrin secretion. However, the influence of hibernation on oxidative pressure and associated antioxidant pathways in the HG remains inadequately understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!