The biotransformation of raspberry ketone and zingerone were individually investigated using cultured cells of Phytolacca americana. In addition to (2S)-4-(4-hydroxyphenyl)-2-butanol (2%), (2S)-4-(3,4-dihydroxyphenyl)-2-butanol (5%), 4-[4-(beta-d-glucopyranosyloxy)phenyl]-2-butanone (19%), 4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (23%), and (2S)-4-(4-hydroxyphenyl)but-2-yl-beta-d-glucopyranoside (20%), two biotransformation products, i.e., 2-hydroxy-4-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (12%) and 2-hydroxy-5-[(3S)-3-hydroxybutyl]phenyl-beta-d-glucopyranoside (11%), were isolated from suspension cells after incubation with raspberry ketone for three days. On the other hand, two compounds, i.e., (2S)-4-(4-hydroxy-3-methoxyphenyl)but-2-yl-beta-d-glucopyranoside (17%) and (2S)-2-(beta-d-glucopyranosyloxy)-4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]butane (16%), together with (2S)-4-(4-hydroxy-3-methoxyphenyl)-2-butanol (15%), 4-[4-(beta-d-glucopyranosyloxy)-3-methoxyphenyl]-2-butanone (21%), and 4-[(3S)-3-hydroxybutyl]-2-methoxyphenyl-beta-d-glucopyranoside (24%) were obtained upon addition of zingerone. Cultured cells of P. americana can reduce, and regioselectively hydroxylate and glucosylate, these food ingredients to their beta-glycosides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2006.11.030 | DOI Listing |
J Nutr Sci Vitaminol (Tokyo)
January 2025
Key Laboratory of Sichuan Cuisine Artificial Intelligence, Sichuan Tourism University.
This study aimed to investigate the regulatory effects of raspberry ketone on hypothalamic inflammation and its mechanism. Mouse microglia cells (BV2 cells) were cultured in vitro with palmitic acid (100 μM) to induce inflammation model and then incubated with raspberry ketone (5, 20, 50 μM) alone or raspberry ketone (50 μM) and the specific inhibitor of uncoupling protein 2 (UCP2), genipin (10 μM), to test the role of UCP2 in raspberry ketone regulatory of inflammation. Meanwhile, C57BL/6J mice were fed a high-fat diet containing raspberry ketone (0.
View Article and Find Full Text PDFACS Sustain Chem Eng
November 2024
University of Zagreb Faculty of Chemical Engineering and Technology, Trg Marka Marulića 19, HR-10000 Zagreb, Croatia.
An enzyme-catalyzed synthesis of rhododendrol, an intermediate in the production of raspberry ketone, was investigated. The approach involves the enzymatic hydrolysis of rhododendrol glycosides into rhododendrol and a glycosidic residue. Rhododendrol glycosides, which are naturally derived from the inner bark of birch trees-a renewable resource-vary considerably in composition depending on the origin of the plants.
View Article and Find Full Text PDFJ Agric Food Chem
October 2024
School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA.
View Article and Find Full Text PDFJ Insect Sci
July 2024
Farma Tech International, North Bend, WA, USA.
Invasive fruit flies (Diptera: Tephritidae) pose a serious threat to the production and export of many commercially important fruits and vegetables. Detection of the agricultural pests Bactrocera dorsalis (Hendel) and Zeugodacus cucurbitae (Coquillett) relies heavily on traps baited with male-specific attractants. For B.
View Article and Find Full Text PDFFood Funct
September 2024
The First Hospital of Lanzhou University, Department of General Surgery, Lanzhou 730000, Gansu, China.
Hyperglycemia leads to increased oxidative stress in mitochondria, an abnormal activation of intracellular inflammatory signals, and mediate multiple dysfunctions. Raspberry ketone (RK) is an aromatic phenolic compound found in many plants and could contribute to weight loss, restore impaired glucose tolerance, and has antioxidant properties. In our investigation, RK could greatly prevent islet, brain and other tissue damage caused by hyperglycemia in a zebrafish model with streptozotocin (STZ)-induced hyperglycemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!