BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis.

J Plant Physiol

Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310029, PR China.

Published: August 2007

AI Article Synopsis

  • A full-length cDNA, named BcMF11, was successfully cloned from Chinese cabbage using RACE from a pollen-specific fragment.
  • BcMF11 is 828 bases long and is characterized as a novel non-coding RNA (ncRNA), lacking an open reading frame and coding capacity.
  • Transcription analysis suggests that BcMF11 is specifically expressed in pollen and may play a role in the pollen development of Chinese cabbage.

Article Abstract

A full-length cDNA, BcMF11, has been cloned from Chinese cabbage (Brassica campestris L. ssp. chinensis Makino) using rapid amplification of the cDNA ends (RACE) based on a pollen-specific cDNA fragment (DN237921). The BcMF11 cDNA has a total length of 828bp with poly (A) tail. Analysis of the sequence demonstrated that BcMF11 is a novel non-coding RNA which has no prominent open reading frame (ORF) or coding capacity. No significant similarities were observed between BcMF11 and previously published sequences in GenBank. Transcription analysis indicated that BcMF11 is a novel pollen-specific ncRNA and may be involved in the pollen development of Chinese cabbage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2006.10.002DOI Listing

Publication Analysis

Top Keywords

non-coding rna
8
brassica campestris
8
campestris ssp
8
ssp chinensis
8
chinese cabbage
8
bcmf11 novel
8
bcmf11
6
bcmf11 putative
4
putative pollen-specific
4
pollen-specific non-coding
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

tRNA gene content, structure, and organization in the flowering plant lineage.

Front Plant Sci

December 2024

National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.

Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.

View Article and Find Full Text PDF

Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!