Background: Tristetraprolin (TTP/ZFP36) family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product.
Methods: Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet) on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3), pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2), and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels.
Results: Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet) increased Ttp mRNA levels by 50-140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet) increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle.
Conclusion: These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1783848 | PMC |
http://dx.doi.org/10.1186/1476-9255-4-1 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
World J Diabetes
January 2025
Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.
Aim: To explore the impact of MIZ on diabetic nephropathy (DN).
Methods: Diabetic mice were created using db/db mice.
ACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India.
Epilepsy is one of the most common neurological disorders. Calcium dysregulation and neuroinflammation are essential and common mechanisms in epileptogenesis. Sarco/endoplasmic reticulum (ER) Ca-ATPase 2b (SERCA2b), a crucial calcium regulatory pump, plays pathological roles in various calcium dysregulation-related diseases.
View Article and Find Full Text PDFVet Res Forum
December 2024
Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
Leydig cells play a crucial role in male reproductive physiology, and their dysfunction is often associated with male infertility. Hypoxia negatively affects the structure and function of Leydig cells. This study aimed to investigate the impact of melatonin on the c-Jun N-terminal kinase (Jnk), P38, and extra-cellular signal-regulated kinases 1 and 2 (Erk1/2) mitogen-activated protein kinase (MAPK) signaling pathways in TM3 mouse Leydig cells under hypoxia induced by cobalt (II) chloride (CoCl).
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Al-Lith University College, Umm Al-Qura University, Makkah, Saudi Arabia.
Background: Invasive breast cancer (BC) is a highly life-threatening disease affecting women world-wide. While its early identification may benefit the provision of more effective therapies, several BC-associated factors may influence BC patients' therapeutic outcomes. Therefore, identifying novel prognostic and therapeutic targets for invasive BC can help with accurate prognosis and therapy-related decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!