The invariant water molecular interaction involving in the Rusticyanin of Thiobacillus ferrooxidans is thought to be important for its molecular complexation with other proteins at differential acidophilic situation. The comparative analysis of the different x-ray, energy minimized, and auto solvated structures of Rusticyanin revealed the presence of five specific invariant bound water molecules (among the approximately 150 water molecules per monomer) in the crystals. The five W 205, W 206, W 112, W 214, and W 221 water molecules (in Rusticyanin PDB code: 1RCY) were seem to be invariant in all the seven structures (PDB codes: 1RCY, 1A3Z, 1A8Z, 1E3O, 1GY1, 1GY2, 2CAL). Among the five conserved water molecules the W 221 (of 1 RCY or the equivalent water molecules in the other oxidized form of Rusticyanin structures) had endowed an interesting coordination potentiality to Cu(+2) ion during the energy minimization. The W 221 was observed to approach toward the tetrahedrally bonded Cu(+2) ion through the opposite (or trans) route of metal-bonded Met 148. This direct water molecular coordination affected the tetrahedral geometry of Cu(+2) to trigonal bipyramidal. Presumably this structural dynamics at the Cu(+2) center could involve in the electron transport process during protein-protein complexation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2007.10507126DOI Listing

Publication Analysis

Top Keywords

water molecules
20
water molecular
12
conserved water
8
structures rusticyanin
8
cu+2 ion
8
water
7
rusticyanin
5
molecules
5
molecular
4
molecular dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!