A crucial challenge in present biomedical research is the elucidation of how fundamental processes like protein folding and aggregation occur in the complex environment of the cell. Many new physico-chemical factors like crowding and confinement must be considered, and immense technical hurdles must be overcome in order to explore these processes in vivo. Understanding protein misfolding and aggregation diseases and developing therapeutic strategies to these diseases demand that we gain mechanistic insight into behaviors and misbehaviors of proteins as they fold in vivo. We have developed a fluorescence approach using FlAsH labeling to study the thermodynamics of folding of a model beta-rich protein, cellular retinoic acid binding protein (CRABP) in Escherichia coli cells. The labeling approach has also enabled us to follow aggregation of a modified version of CRABP and chimeras between CRABP and huntingtin exon 1 with its glutamine repeat tract. In this article, we review our recent results using FlAsH labeling to study in-vivo folding and present new observations that hint at fundamental differences between the thermodynamics and kinetics of protein folding in vivo and in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904568 | PMC |
http://dx.doi.org/10.1002/bip.20665 | DOI Listing |
J Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Inner Mongolia Agricultural University, China.
This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.
Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.
View Article and Find Full Text PDFJ Pept Sci
February 2025
Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP, India.
Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!