Background: Spatially restricted morphogen expression drives many patterning and regeneration processes, but how is the pattern of morphogen expression established and maintained? Patterning of Drosophila leg imaginal discs requires expression of the DPP morphogen dorsally and the wingless (WG) morphogen ventrally. We have shown that these mutually exclusive patterns of expression are controlled by a self-organizing system of feedback loops that involve WG and DPP, but whether the feedback is direct or indirect is not known.

Methods/findings: By analyzing expression patterns of regulatory DNA driving reporter genes in different genetic backgrounds, we identify a key component of this system by showing that WG directly represses transcription of the dpp gene in the ventral leg disc. Repression of dpp requires a tri-partite complex of the WG mediators armadillo (ARM) and dTCF, and the co-repressor Brinker, (BRK), wherein ARM.dTCF and BRK bind to independent sites within the dpp locus.

Conclusions/significance: Many examples of dTCF repression in the absence of WNT signaling have been described, but few examples of signal-driven repression requiring both ARM and dTCF binding have been reported. Thus, our findings represent a new mode of WG mediated repression and demonstrate that direct regulation between morphogen signaling pathways can contribute to a robust self-organizing system capable of dynamically maintaining territories of morphogen expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764032PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000142PLOS

Publication Analysis

Top Keywords

morphogen expression
16
directly represses
8
dpp morphogen
8
self-organizing system
8
arm dtcf
8
morphogen
7
expression
7
dpp
6
wingless directly
4
represses dpp
4

Similar Publications

The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database.

View Article and Find Full Text PDF

Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish.

View Article and Find Full Text PDF

Transcriptome and Gene Expression Analysis Revealed : A Potential New Marker for Somatic Embryogenesis in Common Centaury ( Rafn.).

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia.

Rafn. is a medicinal plant used as a model for studying plant developmental processes due to its developmental plasticity and ease of manipulation in vitro. Identifying the genes involved in its organogenesis and somatic embryogenesis (SE) is the first step toward unraveling the molecular mechanisms underlying its morphogenic plasticity.

View Article and Find Full Text PDF

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

Expression of osteogenic proteins in kidneys of cats with nephrocalcinosis.

J Vet Intern Med

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA.

Background: Nephrocalcinosis is a common pathological finding in cats with chronic kidney disease and nephrolithiasis. Understanding its pathogenesis may identify future therapeutic targets.

Hypothesis: Nephrocalcinosis is associated with expression of an osteogenic phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!