Nucleolar marker for living cells.

Histochem Cell Biol

Max Delbrück Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany.

Published: March 2007

In the recent molecular and cell biological research, there is an increasing need for labeling of subcellular structures in living cells. Here, we present the use of a fluorescently labeled cell penetrating peptide for fast labeling of nucleoli in living cells of different species and origin. We show that the short peptide with ten amino acids was able to cross cellular membranes and reach the nucleolar target sites, thereby marking this subnuclear structure in living cells. The treatment of cells with actinomycin D and labeling of B23 protein and fibrillarin provided evidence for a localization to the granular component of the nucleolus. The fluorescently conjugated nucleolar marker could be used in combination with different fluorophores like fluorescent proteins or DNA dyes, and nucleolar labeling was also preserved during fixation and staining of the cells. Furthermore, we observed a high stability of the label in long-term studies over 24 h as well as no effect on the cellular viability and proliferation and on rDNA transcription. The transducible nucleolar marker is therefore a valuable molecular tool for cell biology that allows a fast and easy labeling of this structure in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-006-0256-4DOI Listing

Publication Analysis

Top Keywords

living cells
20
nucleolar marker
12
structure living
8
cells
7
nucleolar
5
living
5
labeling
5
marker living
4
cells molecular
4
molecular cell
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Objective: Long-term management of people living with HIV (PLWHs) often relies on CD4 T cell counts for assessing immune recovery, yet a single metric offers limited information. This study aimed to explore the association between the CD4/CD8 ratio and T lymphocyte activities in PLWHs.

Methods: 125 PLWHs and 31 HIV-uninfected controls (UCs) were enrolled and categorized into four groups based on their CD4/CD8 ratios: extremely low ratio (ELR) group: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!