Local strategies directed against vascular smooth muscle cell (VSMC) proliferation such as drug-eluting stents reduce the occurrence of restenosis. However, these approaches may also inhibit endothelial cell (EC) proliferation and, thus, impair reendothelialization. We compared the effects of tacrolimus on human VSMC and EC proliferation and migration to sirolimus, a compound with similar molecular structure. Thymidine incorporation was determined in growth factor-stimulated VSMC and EC. The drug concentration at which maximal VSMC proliferation was inhibited by 50% (IC50) was about 10-fold higher for tacrolimus (3.8 x 10 M) than for sirolimus (4.1 x 10 M; P = 0.055). It is interesting that the molar IC50 value in EC was around 10-fold higher for tacrolimus (2.3 x 10 M) than for sirolimus (7.1 x 10 M; P < 0.01). The profile of these drugs on VSMC and EC migration was similar to the one found in the proliferation assays. Inhibition of VSMC proliferation by both tacrolimus and sirolimus was associated with upregulation of the cell-cycle inhibitor p27. Thus, tacrolimus is less potent than sirolimus for inhibiting VSMC proliferation or migration. However, tacrolimus exerts markedly less antiproliferative effects on EC compared with sirolimus. In combination with its potent antiinflammatory effects, tacrolimus may represent a promising compound for the use in drug-eluting stents.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.fjc.0000248233.22570.8bDOI Listing

Publication Analysis

Top Keywords

vsmc proliferation
20
tacrolimus sirolimus
16
effects tacrolimus
12
proliferation
8
vascular smooth
8
smooth muscle
8
drug-eluting stents
8
proliferation migration
8
ic50 10-fold
8
10-fold higher
8

Similar Publications

Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells.

J Recept Signal Transduct Res

January 2025

Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.

The proliferative effects of angiotensin (Ang) II in vascular smooth muscle cells (VSMCs) through its ability to stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway have been established. The main goal of this study was to explore whether Ang III induces ERK1/2 MAPK and VSMC proliferation in cultured Wistar VSMCs. Further, the Ang III actions were compared to those observed in VSMCs derived from the spontaneously hypertensive rat (SHR).

View Article and Find Full Text PDF

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

DC. Regulates Vascular Smooth Muscle Cell Proliferation by Modulating -GlcNAc and MOF Expression.

Prev Nutr Food Sci

December 2024

Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.

Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.

View Article and Find Full Text PDF

Background: Magnolia kobus DC (MO), as a plant medicine, has been reported to have various physiological activities, including neuroprotective, anti-inflammatory, and anti-diabetic effects. However, vascular protective effects of MO remain incompletely understood. In this study, we evaluated the vascular protective effect of MO against ferroptosis in a carotid artery ligation (CAL)-induced neointimal hyperplasia mouse model and in aortic thoracic smooth muscle A7r5 cells.

View Article and Find Full Text PDF

Cellular prion protein (PRNP) has been implicated in various physiological processes in different cell types, for decades. Little has been known how PRNP functions in multiple, yet related processes within a particular system. In our current study, with the aid of high-throughput RNA-sequencing technique, we have presented an overall transcriptome profile of rat vascular smooth muscle cells (VSMCs) with Prnp knockdown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!