Background: To test whether ovarian stimulation for in-vitro fertilization (IVF) affects oocyte quality and thus chromosome segregation behaviour during meiosis and early embryo development, preimplantation genetic screening of embryos was employed in a prospective, randomized controlled trial, comparing two ovarian stimulation regimens.

Methods: Infertile patients under 38 years of age were randomly assigned to undergo a mild stimulation regimen using gonadotrophin-releasing hormone (GnRH) antagonist co-treatment (67 patients), which does not disrupt secondary follicle recruitment, or a conventional high-dose exogenous gonadotrophin regimen and GnRH agonist co-treatment (44 patients). Following IVF, embryos were biopsied at the eight-cell stage and the copy number of 10 chromosomes was analysed in 1 or 2 blastomeres.

Results: The study was terminated prematurely, after an unplanned interim analysis (which included 61% of the planned number of patients) found a lower embryo aneuploidy rate following mild stimulation. Compared with conventional stimulation, significantly fewer oocytes and embryos were obtained following mild stimulation (P < 0.01 and < 0.05, respectively). Consequently, both regimens generated on average a similar number (1.8) of chromosomally normal embryos. Differences in rates of mosaic embryos suggest an effect of ovarian stimulation on mitotic segregation errors.

Conclusions: Future ovarian stimulation strategies should avoid maximizing oocyte yield, but aim at generating a sufficient number of chromosomally normal embryos by reduced interference with ovarian physiology.

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/del484DOI Listing

Publication Analysis

Top Keywords

ovarian stimulation
20
mild stimulation
12
stimulation
9
stimulation in-vitro
8
in-vitro fertilization
8
randomized controlled
8
controlled trial
8
co-treatment patients
8
number chromosomally
8
chromosomally normal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!