The pollen tube exhibits cytoplasmic streaming of organelles, which is dependent on the actin-myosin system. Although microtubule-based motors have also been identified in the pollen tube, many uncertainties exist regarding their role in organelle transport. As part of our attempt to understand the role of microtubule-based movement in the pollen tube of tobacco, we investigated the cooperation between microtubules and actin filaments in the transport of mitochondria and Golgi vesicles, which are distributed differently in the growing pollen tube. The analysis was performed using in vitro motility assays in which organelles move along both microtubules and actin filaments. The results indicated that the movement of mitochondria and Golgi vesicles is slow and continuous along microtubules but fast and irregular along actin filaments. In addition, the presence of microtubules in the motility assays forces organelles to use lower velocities. Actin- and tubulin-binding tests, immunoblotting and immunogold labeling indicated that different organelles bind to identical myosins but associate with specific kinesins. We found that a 90 kDa kinesin (previously known as 90 kDa ATP-MAP) is associated with mitochondria but not with Golgi vesicles, whereas a 170 kDa myosin is distributed on mitochondria and other organelle classes. In vitro and in vivo motility assays indicate that microtubules and kinesins decrease the speed of mitochondria, thus contributing to their positioning in the pollen tube.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcm001DOI Listing

Publication Analysis

Top Keywords

pollen tube
24
actin filaments
12
mitochondria golgi
12
golgi vesicles
12
motility assays
12
movement pollen
8
microtubules actin
8
pollen
6
tube
6
mitochondria
6

Similar Publications

Pollen tube-expressed RUPO forms a complex with OsMTD2 and OsRALF17 and OsRALF19 peptides in rice (Oryza sativa).

J Plant Physiol

January 2025

Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea. Electronic address:

Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth.

View Article and Find Full Text PDF

Extracellular AMP Inhibits Pollen Tube Growth in via Disrupted Calcium Gradient and Disorganized Microfilaments.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.

View Article and Find Full Text PDF

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!