AI Article Synopsis

Article Abstract

Recently, we reported on the development and structural characterization of a phospholipid vesicle based barrier useful for medium throughput screening of passive drug permeability. Here, we investigate the physical and functional integrity of the phospholipid vesicle based barriers to agitation by stirring or shaking, and whether agitation affects drug permeability of sulpiride, metoprolol and testosterone. In addition, three drugs (caffeine, naproxen and sulphasalazine) which were shown in a previous study to affect the electrical resistance of the barriers, were investigated for their influence on the permeability of a simultaneously applied hydrophilic marker (calcein), and on the thermotropic phase transition of the phospholipid bilayers using differential scanning calorimetry (DSC). Electrical resistance measurements indicated that the barriers should withstand shaking speeds up to 150rpm without losing their integrity, but significant release of phospholipids from the membrane barriers to the donor and acceptor chambers was observed under agitation >or=150rpm. When using agitation up to 100rpm no increase in permeability was observed for sulpiride, metoprolol and testosterone. The phospholipid vesicle-based barrier thus differ from other permeability models in that agitation does not lead to an increase in permeability, not even for highly lipophilic drugs such as testosterone. This is explained by the different morphology of the vesicle-based barrier which is containing a 100microm thick layer of mostly aqueous compartments immobilised within a matrix of phospholipids vesicles. Sulphasalazine and naproxen were shown to decrease the electrical resistance and increase the permeability of the hydrophilic marker calcein. The DSC experiments showed that these two drugs probably interact with the head groups of the phospholipids. In contrast, caffeine gave an increase in electrical resistance and a decrease in permeability of calcein. From the DSC experiments no signs of interaction of caffeine with the phospholipid bilayer could be observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2006.11.017DOI Listing

Publication Analysis

Top Keywords

electrical resistance
16
drug permeability
12
phospholipid vesicle
12
vesicle based
12
increase permeability
12
permeability
9
based barrier
8
sulpiride metoprolol
8
metoprolol testosterone
8
hydrophilic marker
8

Similar Publications

[Body composition assessment methods in clinical practice].

Orv Hetil

January 2025

1 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest, Korányi S. u. 2/A, 1083 Magyarország.

View Article and Find Full Text PDF

Review of upper extremity passive joint impedance identification in people with Duchenne Muscular Dystrophy.

J Neuroeng Rehabil

January 2025

Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.

Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

The role of sulfidated zero-valent iron in enhancing anaerobic digestion of waste activated sludge.

J Environ Manage

January 2025

Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:

Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!